scholarly journals Anaerobic oxidation of petroleum hydrocarbons in enrichment cultures from sediments of the Gorevoy Utes natural oil seep under methanogenic and sulfate-reducing conditions

Author(s):  
Olga N. Pavlova ◽  
Oksana N. Izosimova ◽  
Svetlana M. Chernitsyna ◽  
Vyacheslav G. Ivanov ◽  
Tatyana V. Pogodaeva ◽  
...  

Abstract This article presents the first experimental data on the ability of microbial communities from sediments of the Gorevoy Utes natural oil seep to degrade petroleum hydrocarbons under anaerobic conditions. Like in marine ecosystems associated with oil discharge, available electron acceptors, in particular sulfate ions, affect the composition of the microbial community and the degree of hydrocarbon conversion. The cultivation of the surface sediments under sulfate-reducing conditions led to the formation of a more diverse bacterial community and greater loss of n-alkanes (28%) in comparison to methanogenic conditions (6%). Microbial communities of both surface and deep sediments are more oriented to degrade polycyclic aromatic hydrocarbons (PAHs), to which the degree of the PAH conversion testifies (up to 46%) irrespective of the present electron acceptors. Uncultured microorganisms with the closest homologues from thermal habitats, sediments of mud volcanoes and environments contaminated with hydrocarbons mainly represented microbial communities of enrichment cultures. The members of the phyla Firmicutes, Chloroflexi, and Caldiserica (OP5), as well as the class Deltaproteobacteria and Methanomicrobia, were mostly found in enrichment cultures and belong to the “core” of microorganisms The influence of gas-saturated fluids may be responsible for the presence in the bacterial 16S rRNA gene libraries of the sequences of “rare taxa”: Planctomycetes, Ca. Atribacteria (OP9), Ca. Armatimonadetes (OP10), Ca. Latescibacteria (WS3), Ca. division (AC1), Ca. division (OP11), and Ca. Parcubacteria (OD1), which can be involved in hydrocarbon oxidation.

2004 ◽  
Vol 70 (12) ◽  
pp. 7053-7065 ◽  
Author(s):  
George Y. Matsui ◽  
David B. Ringelberg ◽  
Charles R. Lovell

ABSTRACT Marine infaunal burrows and tubes greatly enhance solute transport between sediments and the overlying water column and are sites of elevated microbial activity. Biotic and abiotic controls of the compositions and activities of burrow and tube microbial communities are poorly understood. The microbial communities in tubes of the marine infaunal polychaete Diopatria cuprea collected from two different sediment habitats were examined. The bacterial communities in the tubes from a sandy sediment differed from those in the tubes from a muddy sediment. The difference in community structure also extended to the sulfate-reducing bacterial (SRB) assemblage, although it was not as pronounced for this functional group of species. PCR-amplified 16S rRNA gene sequences recovered from Diopatra tube SRB by clonal library construction and screening were all related to the family Desulfobacteriaceae. This finding was supported by phospholipid fatty acid analysis and by hybridization of 16S rRNA probes specific for members of the genera Desulfosarcina, Desulfobacter, Desulfobacterium, Desulfobotulus, Desulfococcus, and Desulfovibrio and some members of the genera Desulfomonas, Desulfuromonas, and Desulfomicrobium with 16S rRNA gene sequences resolved by denaturing gradient gel electrophoresis. Two of six SRB clones from the clone library were not detected in tubes from the sandy sediment. The habitat in which the D. cuprea tubes were constructed had a strong influence on the tube bacterial community as a whole, as well as on the SRB assemblage.


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3081-3086 ◽  
Author(s):  
Daisuke Suzuki ◽  
Zhiling Li ◽  
Xinxin Cui ◽  
Chunfung Zhang ◽  
Arata Katayama

A strictly anaerobic, mesophilic, sulfate-reducing bacterial strain (DST), isolated from river sediment contaminated with volatile organic compounds, was characterized phenotypically and phylogenetically. Cells were Gram-reaction-negative, non-motile short rods. For growth, optimum NaCl concentration was 0.9 g l−1, optimum temperature was 30 °C and optimum pH was 7.2. Strain DST utilized phenol, benzoate, 4-hydroxybenzoate, 4-methylphenol, 4-chlorophenol, acetate, butyrate and pyruvate as electron donors for sulfate reduction. Electron donors were completely oxidized. Strain DST did not utilize sulfite, thiosulfate or nitrate as electron acceptors. The genomic DNA G+C content of strain DST was 58.9 mol%. Major cellular fatty acids were iso-C14 : 0, anteiso-C15 : 0 and C18 : 1ω7c. Phylogenetic analyses based on the 16S rRNA gene indicated its closest relatives were strains of Desulfobacterium anilini (about 98–99 % sequence similarity) but the DNA–DNA hybridization value with Desulfobacterium anilini Ani1T was around 40 %. Although strain DST and its relatives shared most phenotypic and chemotaxonomic characteristics, the utilization of 4-chlorophenol, the range of electron acceptors and the optimum growth conditions differed. Strain DST is closely related to strains of Desulfobacterium anilini , but constitutes a different species within the genus. Based on phylogeny, phenotypic characteristics and chemotaxonomic characteristics, strain DST and Desulfobacterium anilini were clearly different from strains of other species of the genus Desulfobacterium . We thus propose the reclassification of Desulfobacterium anilini within a new genus, Desulfatiglans gen. nov., as Desulfatiglans anilini comb. nov. We also propose Desulfatiglans parachlorophenolica sp. nov. to accommodate strain DST. The type strain is DST ( = JCM 19179T = DSM 27197T).


2008 ◽  
Vol 57 (3) ◽  
pp. 439-444 ◽  
Author(s):  
D. Z. Sousa ◽  
M. A. Pereira ◽  
J. I. Alves ◽  
H. Smidt ◽  
A. J. M Stams ◽  
...  

This paper reviews recent results obtained on long-chain fatty acids (LCFA) anaerobic degradation. Two LCFA were used as model substrates: oleate, a mono-unsaturated LCFA, and palmitate, a saturated LCFA, both abundant in LCFA-rich wastewaters. 16S rRNA gene analysis of sludge samples submitted to continuous oleate- and palmitate-feeding followed by batch degradation of the accumulated LCFA demonstrated that bacterial communities were dominated by members of the Clostridiaceae and Syntrophomonadaceae families. Archaeal populations were mainly comprised of hydrogen-consuming microorganisms belonging to the genus Methanobacterium, and acetate-utilizers from the genera Methanosaeta and Methanosarcina. Enrichment cultures growing on oleate and palmitate, in the absence or presence of sulfate, gave more insight into the major players involved in the degradation of unsaturated and saturated LCFA. Syntrophomonas-related species were identified as predominant microorganisms in all the enrichment cultures. Microorganisms clustering within the family Syntrophobacteraceae were identified in the methanogenic and sulfate-reducing enrichments growing on palmitate. Distinct bacterial consortia were developed in oleate and palmitate enrichments, and observed differences might be related to the different degrees of saturation of these two LCFA. A new obligately syntrophic bacterium, Syntrophomonas zehnderi, was isolated from an oleate-degrading culture and its presence in oleate-degrading sludges detected by 16S rRNA gene cloning and sequencing.


Author(s):  
Inna A. Panova ◽  
Olga Ikkert ◽  
Marat R. Avakyan ◽  
Dmitry S. Kopitsyn ◽  
Andrey V. Mardanov ◽  
...  

A novel, spore-forming, acidophilic and metal-resistant sulfate-reducing bacterium, strain OLT, was isolated from a microbial mat in a tailing dam at a gold ore mining site. Cells were slightly curved immotile rods, 0.5 µm in diameter and 2.0–3.0 µm long. Cells were stained Gram-negative, despite the Gram-positive cell structure revealed by electron microscopy of ultrathin layers. OLT grew at pH 4.0–7.0 with an optimum at 5.5. OLT utilised H2, lactate, pyruvate, malate, formate, propionate, ethanol, glycerol, glucose, fructose, sucrose, peptone and tryptone as electron donors for sulfate reduction. Sulfate, sulfite, thiosulfate, nitrate and fumarate were used as electron acceptors in the presence of lactate. Elemental sulfur, iron (III), and arsenate did not serve as electron acceptors. The major cellular fatty acids were C16:1ω7c (39.0 %) and C16 : 0 (12.1 %). The draft genome of OLT was 5.29 Mb in size and contained 4909 protein-coding genes. The 16S rRNA gene sequence placed OLT within the phylum Firmicutes , class Clostridia , family Peptococcaceae , genus Desulfosporosinus. Desulfosporosinus nitroreducens 59.4BT was the closest relative with 97.6 % sequence similarity. On the basis of phenotypic and phylogenetic characteristics, strain OLT represents a novel species within the genus Desulfosporosinus , for which we propose the name Desulfosporosinus metallidurans sp. nov. with the type strain OLT (=DSM 104464T=VKM В−3021T).


2017 ◽  
Vol 5 (17) ◽  
Author(s):  
Rhea Lumactud ◽  
Roberta Fulthorpe ◽  
Vladimir Sentchilo ◽  
Jan Roelof van der Meer

ABSTRACT Plantibacter flavus isolate 251 is a bacterial endophyte isolated from an Achillea millefolium plant growing in a natural oil seep soil located in Oil Springs, Ontario, Canada. We present here a draft genome sequence of an infrequently reported genus Plantibacter, highlighting an endophytic lifestyle and biotechnological potential.


Sign in / Sign up

Export Citation Format

Share Document