scholarly journals Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase

2020 ◽  
Author(s):  
N. Dodge ◽  
D. A. Russo ◽  
B.M. Blossom ◽  
R.K. Singh ◽  
B. van Oort ◽  
...  

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim apply a WSCP-Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. Results We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP-Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP-Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP-Chl a shows increased cellulose oxidation under low light conditions, and the WSCP-Chl a complex remains stable after 24 hours of light exposure. Additionally, the WSCP-Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. Conclusion With WSCP-Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP-Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
N. Dodge ◽  
D. A. Russo ◽  
B. M. Blossom ◽  
R. K. Singh ◽  
B. van Oort ◽  
...  

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim to apply WSCP–Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. Results We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP–Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP–Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP–Chl a shows increased cellulose oxidation under low light conditions, and the WSCP–Chl a complex remains stable after 24 h of light exposure. Additionally, the WSCP–Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. Conclusion With WSCP–Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP–Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.


2020 ◽  
Author(s):  
N. Dodge ◽  
D. A. Russo ◽  
B.M. Blossom ◽  
R.K. Singh ◽  
B. van Oort ◽  
...  

Abstract Background: Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim apply a WSCP-Chl α as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. Results: We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP-Chl α) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP-Chl α is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP-Chl α shows increased cellulose oxidation under low light conditions, and the WSCP-Chl α complex remains stable after 24 hours of light exposure. Additionally, the WSCP-Chl α complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings.Conclusion: With WSCP-Chl α as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP-Chl α allows for stable photobiocatalysis providing a sustainable solution for biomass processing.


2021 ◽  
Vol 8 (3) ◽  
pp. 1454-1464
Author(s):  
Ana Gabriela V. Sepulchro ◽  
Vanessa O.A. Pellegrini ◽  
Lucas D. Dias ◽  
Marco A.S. Kadowaki ◽  
David Cannella ◽  
...  

Cost-efficient plant biomass conversion using biochemical and/or chemical routes is essential for transitioning to sustainable chemical technologies and renewable biofuels. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that make part of modern hydrolytic cocktails destined for plant biomass degradation. Here, we characterized MtLPMO9A from Thermothelomyces thermophilus M77 (formerly Myceliophthora thermophila) and demonstrated that it could be efficiently driven by chlorophyllin excited by light in the presence of a reductant agent. However, in the absence of chemical reductant, chlorophyllin and light alone do not lead to a significant release of the reaction products by the LPMO, indicating a low capacity of MtLPMO9A reduction (either via direct electron transfer or via superoxide ion, O2•-). We showed that photocatalysis could significantly increase the LPMO activity against highly crystalline and recalcitrant cellulosic substrates, which are poorly degraded in the absence of chlorophyllin and light. We also evaluated the use of co-substrates by MtLPMO9A, revealing that the enzyme can use both hydrogen peroxide (H2O2) and molecular oxygen (O2) as co-substrates for cellulose catalytic oxidation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
F. Calderaro ◽  
M. Keser ◽  
M. Akeroyd ◽  
L. E. Bevers ◽  
V. G. H. Eijsink ◽  
...  

Abstract Background The discovery of lytic polysaccharide monooxygenases (LPMO) has changed our perspective on enzymatic degradation of plant biomass. Through an oxidative mechanism, these enzymes are able to cleave and depolymerize various polysaccharides, acting not only on crystalline substrates such as chitin and cellulose, but also on other polysaccharides, such as xyloglucan, glucomannan and starch. Despite their widespread use, uncertainties related to substrate specificity and stereospecificity, the nature of the co-substrate, in-process stability, and the nature of the optimal reductant challenge their exploitation in biomass processing applications. Results In this work, we studied the properties of a novel fungal LPMO from the thermophilic fungus Thielavia australiensis, TausLPMO9B. Heterologous expression of TausLPMO9B in Aspergillus niger yielded a glycosylated protein with a methylated N-terminal histidine showing LPMO activity. High sequence identity of the AA9 domain to that of MtLPMO9B (MYCTH_80312) from Myceliophthora thermophila (84%) indicated strictly C1-oxidizing activity on cellulose, which was confirmed experimentally by the analysis of products released from cellulose using HPAEC. The enzyme was stable and active at a pH ranging from 4 to 6, thus matching the conditions commonly used in industrial biomass processing, where a low pH (between 4 and 5) is used due to the pH-optima of commercial cellulases and a desire to limit microbial contamination. Conclusion While the oxidative cleavage of phosphoric acid swollen cellulose (PASC) by TausLPMO9B was boosted by the addition of H2O2 as a co-substrate, this effect was not observed during the saccharification of acid pretreated corn stover. This illustrates key differences between the lab-scale tests with artificial, lignin-free substrates and industrial settings with lignocellulosic biomass as substrate.


2019 ◽  
Vol 85 (9) ◽  
Author(s):  
Fei Li ◽  
Fuying Ma ◽  
Honglu Zhao ◽  
Shu Zhang ◽  
Lei Wang ◽  
...  

ABSTRACT Lytic polysaccharide monooxygenases (LPMOs), a class of copper-dependent enzymes, play a crucial role in boosting the enzymatic decomposition of polysaccharides. Here, we reveal that LPMOs might be associated with a lignin degradation pathway. An LPMO from white-rot fungus Pleurotus ostreatus, LPMO9A (PoLPMO9A), was shown to be able to efficiently drive the activity of class II lignin-degrading peroxidases in vitro through H2O2 production regardless of the presence or absence of a cellulose substrate. An LPMO-driven peroxidase reaction can degrade β-O-4 and 5-5′ types of lignin dimer with 46.5% and 37.7% degradation, respectively, as well as alter the structure of natural lignin and kraft lignin. H2O2 generated by PoLPMO9A was preferentially utilized for the peroxidase from Physisporinus sp. strain P18 (PsVP) reaction rather than cellulose oxidation, indicating that white-rot fungi may have a strategy for preferential degradation of resistant lignin. This discovery shows that LPMOs may be involved in lignin oxidation as auxiliary enzymes of lignin-degrading peroxidases during the white-rot fungal decay process. IMPORTANCE The enzymatic biodegradation of structural polysaccharides is affected by the degree of delignification of lignocellulose during the white-rot fungal decay process. The lignin matrix decreases accessibility to the substrates for LPMOs. H2O2 has been studied as a cosubstrate for LPMOs, but the formation and utilization of H2O2 in the reactions still represent an intriguing focus of current research. Lignin-degrading peroxidases and LPMOs usually coexist during fungal decay, and therefore, the relationship between H2O2-dependent lignin-degrading peroxidases and LPMOs should be considered during the wood decay process. The current study revealed that white-rot fungal LPMOs may be involved in the degradation of lignin through driving a versatile form of peroxidase activity in vitro and that H2O2 generated by PoLPMO9A was preferentially used for lignin oxidation by lignin-degrading peroxidase (PsVP). These findings reveal a potential relationship between LPMOs and lignin degradation, which will be of great significance for further understanding the contribution of LPMOs to the white-rot fungal decay process.


2020 ◽  
Author(s):  
Bjørge Westereng ◽  
Stjepan K. Kračun ◽  
Shaun Leivers ◽  
Magnus Ø. Arntzen ◽  
Finn L. Aachmann ◽  
...  

ABSTRACTPolysaccharides from plant biomass are the most abundant renewable chemicals on Earth and can potentially be converted to a wide variety of useful glycoconjugates. While anomeric hydroxyl groups of carbohydrates are amenable to a variety of useful chemical modifications, selective cross-coupling to non-reducing ends has remained challenging. Several lytic polysaccharide monooxygenases (LPMOs), powerful enzymes known for their application in cellulose degradation, specifically oxidize non-reducing ends, introducing carbonyl groups that can be utilized for chemical coupling. This study provides a simple and highly specific approach to produce oxime-based glycoconjugates from LPMO-functionalized oligosaccharides. The products are evaluated by HPLC, mass spectrometry and NMR. Furthermore, we demonstrate potential biodegradability of these glycoconjugates using selective enzymes.


Author(s):  
Scott Mazurkewich ◽  
Andrea Seveso ◽  
Silvia Hüttner ◽  
Gisela Brändén ◽  
Johan Larsbrink

The thermophilic fungus Malbranchea cinnamomea contains a host of enzymes that enable its ability as an efficient degrader of plant biomass and that could be mined for industrial applications. This thermophilic fungus has been studied and found to encode eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), which collectively possess different substrate specificities for a range of plant cell-wall-related polysaccharides and oligosaccharides. To gain greater insight into the molecular determinants defining the different specificities, structural studies were pursued and the structure of McAA9F was determined. The enzyme contains the immunoglobulin-like fold typical of previously solved AA9 LPMO structures, but contains prominent differences in the loop regions found on the surface of the substrate-binding site. Most significantly, McAA9F has a broad substrate specificity, with activity on both crystalline and soluble polysaccharides. Moreover, it contains a small loop in a region where a large loop has been proposed to govern specificity towards oligosaccharides. The presence of the small loop leads to a considerably flatter and more open surface that is likely to enable the broad specificity of the enzyme. The enzyme contains a succinimide residue substitution, arising from intramolecular cyclization of Asp10, at a position where several homologous members contain an equivalent residue but cyclization has not previously been observed. This first structure of an AA9 LPMO from M. cinnamomea aids both the understanding of this family of enzymes and the exploration of the repertoire of industrially relevant lignocellulolytic enzymes from this fungus.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Tina Rise Tuveng ◽  
Marianne Slang Jensen ◽  
Lasse Fredriksen ◽  
Gustav Vaaje-Kolstad ◽  
Vincent G. H. Eijsink ◽  
...  

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are oxidative, copper-dependent enzymes that function as powerful tools in the turnover of various biomasses, including lignocellulosic plant biomass. While LPMOs are considered to be of great importance for biorefineries, little is known about industrial relevant properties such as the ability to operate at high temperatures. Here, we describe a thermostable, cellulose-active LPMO from a high-temperature compost metagenome (called mgLPMO10). Results MgLPMO10 was found to have the highest apparent melting temperature (83 °C) reported for an LPMO to date, and is catalytically active up to temperatures of at least 80 °C. Generally, mgLPMO10 showed good activity and operational stability over a wide temperature range. The LPMO boosted cellulose saccharification by recombinantly produced GH48 and GH6 cellobiohydrolases derived from the same metagenome, albeit to a minor extent. Cellulose saccharification studies with a commercial cellulase cocktail (Celluclast®) showed that the performance of this thermostable bacterial LPMO is comparable with that of a frequently utilized fungal LPMO from Thermoascus aurantiacus (TaLPMO9A). Conclusions The high activity and operational stability of mgLPMO10 are of both fundamental and applied interest. The ability of mgLPMO10 to perform oxidative cleavage of cellulose at 80 °C and the clear synergy with Celluclast® make this enzyme an interesting candidate in the development of thermostable enzyme cocktails for use in lignocellulosic biorefineries.


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Author(s):  
Lê Thanh Long ◽  
Nguyễn Văn Toản ◽  
Nguyễn Văn Huế ◽  
Trang Sĩ Trung ◽  
Vũ Ngọc Bội

Chủng D1 phân lập từ các mẫu chuối có vết bệnh thán thư điển hình được sử dụng để nghiên cứu khả năng kháng nấm của chitosan hoà tan trong nước (Water-soluble chitosan_WSC) ở điều kiện in vitro. Kết quả phân tích trình tự gen mã hoá 28S rRNA của chủng D1 cho thấy tương đồng trình tự cao với các trình tự tương ứng của loài Colletotrichum musae và được ký hiệu là Colletotrichum musae D1. Kết quả các thí nghiệm đều cho thấy C. musae D1 rất nhạy cảm với WSC, hiệu lực ức chế tăng khi tăng nồng độ WSC xử lý ở điều kiện in vitro. Trên môi trường PDA, nồng độ 1,6% WSC ức chế hoàn toàn sự sinh trưởng của sợi nấm C. musae D1, nồng độ ức chế 50% (PIRG50) và nồng độ ức chế tối thiểu 90% (MIC90) tương ứng với nồng độ WSC 0,28% và 0,88%. Trong môi trường PDB, giá trị IC50 và MIC90 tương ứng là 0,11% và 0,43% và sự phát triển của sợi nấm C. musae D1 bị ức chế hoàn toàn ở nồng độ 0,8%. WSC không chỉ ức chế sự nảy mầm mà còn gây biến đổi bất thường bào tử nấm khi quan sát trên kính hiển vi.


Sign in / Sign up

Export Citation Format

Share Document