scholarly journals Impact of Robinia pseudoacacia stand conversion on soil bacterial communities composition and soil properties in Mount Tai, China

2020 ◽  
Author(s):  
kun li ◽  
xu han ◽  
ruiqiang ni ◽  
ge shi ◽  
Sergio de-Miguel ◽  
...  

Abstract Background: Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains in northern China. Because of its nitrogen-fixing ability, it can play a positive role in soil and forest restoration. After clear-cutting of planted stands, R. pseudoacacia stands become coppice plantations. The impacts of shifting from seedling to coppice plantations on soil bacterial community and soil properties have not been well described. This study aims to quantify how soil properties and bacterial community composition vary between planted seedling versus coppice stands.Methods: Three 20×20 m plots were randomly selected in each seedling and coppice stand. The bulk soil and rhizosphere soil were sampled in the nine above-mentioned sample plots in the summer of 2017. Bulk soil was sampled at 10 cm from the soil surface using a soil auger. Rhizosphere soil samples were collected by brush. The soil samples were transported to the laboratory for chemical analysis and bacterial community composition and diversity was obtanied through DNA extraction, 16S rRNA gene amplification and high throughput sequencing.Results: The results showed that, compared to seedling plantations, soil quality decreased significantly in coppice stands, but without affecting soil exchangeable Mg2+ and K+. Total carbon (C) and nitrogen (N) were lower in the rhizosphere than in bulk soil, whereas nutrient availability showed an opposite trend. The conversion from seedling to coppice plantations was also related to significant differences in soil bacterial community structure and to the reduction of soil bacterial α-diversity. Principal component analysis (PCA) showed that, bacterial community composition was similar in both bulk and rhizosphere soils in second generation coppice plantations. Specially, the conversion from seedling to coppice increased the relative abundance of Proteobacteria and Rhizobium, but reduced that of Actinobacteria, which may result in a decline of soil nutrient availability. Mantel tests revealed that C, N, Soil organic matter (SOM), nitrate nitrogen (NO3--N) and available phosphorus positively correlated with bacterial community composition, while a variation partition analysis (VPA) showed that NO3--N explained a relatively greater proportion of bacterial distribution (15.12%), compared with C and SOM. Surprinsingly, N showed no relationship with bacterial community composition, which may be related to nitrogen transportation. Conclusions: The conversion from seedling to coppice stands reduced soil quality and led to spatial-temporal homogenization of the soil bacterial community structure in both the rhizosphere and bulk soils. Such imbalance in microbial structure can accelerate the decline of R. pseudoacacia. This may affect the role of R. pseudoacacia coppice stands in soil and forest restoration of barren lands in mountain areas.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kun Li ◽  
Xu Han ◽  
Ruiqiang Ni ◽  
Ge Shi ◽  
Sergio de-Miguel ◽  
...  

Abstract Background Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains in northern China. Because of its nitrogen-fixing ability, it can play a positive role in soil and forest restoration. After clear-cutting of planted stands, R. pseudoacacia stands become coppice plantations. The impacts of shifting from seedling to coppice stands on soil bacterial community and soil properties have not been well described. This study aims to quantify how soil properties and bacterial community composition vary between planted seedling versus coppice stands. Methods Nine 20 m × 20 m plots were randomly selected in seedling and coppice stands. The bulk soil and rhizosphere soil were sampled in summer 2017. Bulk soil was sampled at 10 cm from the soil surface using a soil auger. Rhizosphere soil samples were collected using a brush. The soil samples were transported to the laboratory for chemical analysis, and bacterial community composition and diversity was obtained through DNA extraction, 16S rRNA gene amplification and high-throughput sequencing. Results The results showed that, compared to seedling plantations, soil quality decreased significantly in coppice stands, but without affecting soil exchangeable Mg2+ and K+. Total carbon (C) and nitrogen (N) were lower in the rhizosphere than in bulk soil, whereas nutrient availability showed an opposite trend. The conversion from seedling to coppice plantations was also related to significant differences in soil bacterial community structure and to the reduction of soil bacterial α-diversity. Principal component analysis (PCA) showed that bacterial community composition was similar in both bulk and rhizosphere soils in second-generation coppice plantations. Specially, the conversion from seedling to coppice stands increased the relative abundance of Proteobacteria and Rhizobium, but reduced that of Actinobacteria, which may result in a decline of soil nutrient availability. Mantel tests revealed that C, N, soil organic matter (SOM), nitrate nitrogen (NO3−-N) and available phosphorus positively correlated with bacterial community composition, while a variation partition analysis (VPA) showed that NO3−-N explained a relatively greater proportion of bacterial distribution (15.12%), compared with C and SOM. Surprisingly, N showed no relationship with bacterial community composition, which may be related to nitrogen transportation. Conclusions The conversion from seedling to coppice stands reduced soil quality and led to spatial-temporal homogenization of the soil bacterial community structure in both the rhizosphere and bulk soils. Such imbalance in microbial structure can accelerate the decline of R. pseudoacacia. This may affect the role of R. pseudoacacia coppice stands in soil and forest restoration of barren lands in mountain areas.


2020 ◽  
Author(s):  
kun li ◽  
xu han ◽  
ruiqiang ni ◽  
ge shi ◽  
Sergio de-Miguel ◽  
...  

Abstract Background: Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains in northern China. Because of its nitrogen-fixing ability, it can play a positive role in soil and forest restoration. After clear-cutting of planted stands, R. pseudoacacia stands become coppice plantations. The impacts of shifting from seedling to coppice stands on soil bacterial community and soil properties have not been well described. This study aims to quantify how soil properties and bacterial community composition vary between planted seedling versus coppice stands.Methods: Nine 20×20 m plots were randomly selected in seedling and coppice stands. The bulk soil and rhizosphere soil were sampled in summer 2017. Bulk soil was sampled at 10 cm from the soil surface using a soil auger. Rhizosphere soil samples were collected using a brush. The soil samples were transported to the laboratory for chemical analysis, and bacterial community composition and diversity was obtained through DNA extraction, 16S rRNA gene amplification and high-throughput sequencing.Results: The results showed that, compared to seedling plantations, soil quality decreased significantly in coppice stands, but without affecting soil exchangeable Mg2+ and K+. Total carbon (C) and nitrogen (N) were lower in the rhizosphere than in bulk soil, whereas nutrient availability showed an opposite trend. The conversion from seedling to coppice plantations was also related to significant differences in soil bacterial community structure and to the reduction of soil bacterial α-diversity. Principal component analysis (PCA) showed that bacterial community composition was similar in both bulk and rhizosphere soils in second generation coppice plantations. Specially, the conversion from seedling to coppice stands increased the relative abundance of Proteobacteria and Rhizobium, but reduced that of Actinobacteria, which may result in a decline of soil nutrient availability. Mantel tests revealed that C, N, Soil organic matter (SOM), nitrate nitrogen (NO3--N) and available phosphorus positively correlated with bacterial community composition, while a variation partition analysis (VPA) showed that NO3--N explained a relatively greater proportion of bacterial distribution (15.12%), compared with C and SOM. Surprisingly, N showed no relationship with bacterial community composition, which may be related to nitrogen transportation.Conclusions: The conversion from seedling to coppice stands reduced soil quality and led to spatial-temporal homogenization of the soil bacterial community structure in both the rhizosphere and bulk soils. Such imbalance in microbial structure can accelerate the decline of R. pseudoacacia. This may affect the role of R. pseudoacacia coppice stands in soil and forest restoration of barren lands in mountain areas.


2020 ◽  
Author(s):  
Kun Li ◽  
Xu Han ◽  
Ruiqiang Ni ◽  
Ge Shi ◽  
Sergio de-Miguel ◽  
...  

Abstract Background: Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains in northern China. Because of its nitrogen-fixing ability, it can play a positive role in soil and forest restoration. After clear-cutting of planted stands, R. pseudoacacia stands become coppice plantations. The impacts of shifting from seedling to coppice plantations on soil bacterial community and soil properties have not been well described. This study aims to quantify how soil properties and bacterial community composition vary between planted seedling versus coppice stands.Methods: Three 20 × 20 m plots were randomly selected in each seedling and coppice stand. The bulk soil and rhizosphere soil were sampled in the nine above-mentioned sample plots in the summer of 2017. Bulk soil was sampled at 10 cm from the soil surface using a soil auger. Rhizosphere soil samples were collected by brush. The soil samples were transported to the laboratory for chemical analysis and bacterial community composition and diversity was obtanied through DNA extraction, 16S rRNA gene amplification and high throughput sequencing.Results: The results showed that, compared to seedling plantations, soil quality decreased significantly in coppice stands, but without affecting soil exchangeable Mg2+ and K2+. Total carbon (C) and nitrogen (N) were lower in the rhizosphere than in bulk soil, whereas nutrient availability showed an opposite trend. The conversion from seedling to coppice plantations was also related to significant differences in soil bacterial community structure and to the reduction of soil bacterial α-diversity. Principal component analysis (PCA) showed that, bacterial community composition was similar in both bulk and rhizosphere soils in second generation coppice plantations. Specially, the conversion from seedling to coppice increased the relative abundance of Proteobacteria and Rhizobium, but reduced that of Actinobacteria, which may result in a decline of soil nutrient availability. Mantel tests revealed that C, N, Soil organic matter (SOM), nitrate nitrogen (NO3−-N) and available phosphorus positively correlated with bacterial community composition, while a variation partition analysis (VPA) showed that NO3−-N explained a relatively greater proportion of bacterial distribution (15.12%), compared with C and SOM. Surprinsingly, N showed no relationship with bacterial community composition, which may be related to nitrogen transportation.Conclusions: The conversion from seedling to coppice stands reduced soil quality and led to spatial-temporal homogenization of the soil bacterial community structure in both the rhizosphere and bulk soils. Such imbalance in microbial structure can accelerate the decline of R. pseudoacacia. This may affect the role of R. pseudoacacia coppice stands in soil and forest restoration of barren lands in mountain areas.


2020 ◽  
Author(s):  
kun li ◽  
xu han ◽  
ruiqiang ni ◽  
ge shi ◽  
Sergio de-Miguel ◽  
...  

Abstract Background: Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains in northern China. Because of its nitrogen-fixing ability, it can play a positive role in soil and forest restoration. After clear-cutting of planted stands, R. pseudoacacia stands become coppice plantations. The impacts of shifting from seedling to coppice stands on soil bacterial community and soil properties have not been well described. This study aims to quantify how soil properties and bacterial community composition vary between planted seedling versus coppice stands.Methods: Nine 20×20 m plots were randomly selected in seedling and coppice stands. The bulk soil and rhizosphere soil were sampled in summer 2017. Bulk soil was sampled at 10 cm from the soil surface using a soil auger. Rhizosphere soil samples were collected using a brush. The soil samples were transported to the laboratory for chemical analysis, and bacterial community composition and diversity was obtained through DNA extraction, 16S rRNA gene amplification and high-throughput sequencing.Results: The results showed that, compared to seedling plantations, soil quality decreased significantly in coppice stands, but without affecting soil exchangeable Mg2+ and K+. Total carbon (C) and nitrogen (N) were lower in the rhizosphere than in bulk soil, whereas nutrient availability showed an opposite trend. The conversion from seedling to coppice plantations was also related to significant differences in soil bacterial community structure and to the reduction of soil bacterial α-diversity. Principal component analysis (PCA) showed that bacterial community composition was similar in both bulk and rhizosphere soils in second generation coppice plantations. Specially, the conversion from seedling to coppice stands increased the relative abundance of Proteobacteria and Rhizobium, but reduced that of Actinobacteria, which may result in a decline of soil nutrient availability. Mantel tests revealed that C, N, Soil organic matter (SOM), nitrate nitrogen (NO3--N) and available phosphorus positively correlated with bacterial community composition, while a variation partition analysis (VPA) showed that NO3--N explained a relatively greater proportion of bacterial distribution (15.12%), compared with C and SOM. Surprisingly, N showed no relationship with bacterial community composition, which may be related to nitrogen transportation. Conclusions: The conversion from seedling to coppice stands reduced soil quality and led to spatial-temporal homogenization of the soil bacterial community structure in both the rhizosphere and bulk soils. Such imbalance in microbial structure can accelerate the decline of R. pseudoacacia. This may affect the role of R. pseudoacacia coppice stands in soil and forest restoration of barren lands in mountain areas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zheng Zhao ◽  
Changbin Chu ◽  
Deping Zhou ◽  
Qingfeng Wang ◽  
Shuhang Wu ◽  
...  

AbstractThe high productivity and efficient nutrient utilization in rice–fish integrated farming system are well reported. However, the characteristics of soil bacterial communities and their relationship with soil nutrient availability in rice–fish field remain unclear. In this study, we selected three paddy fields, including a rice monoculture field and two rice–fish fields with different planting years, to investigate the soil bacterial community composition with Illumina MiSeq sequencing technology. The results indicated that the soil properties were significantly different among different rice farming systems. The soil bacterial community composition in the rice–fish field was significantly different from that in the rice monoculture field. Five of the top 15 phyla were observed with significant differences and Nitrospirae was the most significant one. However, no taxa observed with significance between the rice planting area and aquaculture area no matter in the 1st or 5th year of rice–fish field. RDA analysis showed that the soil bacterial community differentiation in the 5th year of rice–fish field was positively correlated with soil properties, such as AN and OM contents, EC and pH value. Although the rice yields in rice–fish field decreased, the net economic benefit of the rice–fish system enhanced obviously due to the high value of aquaculture animals.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 562
Author(s):  
Wanlong Sun ◽  
Xuehua Liu ◽  
Zhaoxue Tian ◽  
Xiaoming Shao

Afforestation with different tree species formed different vegetation patterns, and altered soil properties and the composition and diversity of the soil bacterial community. In order to analyze the difference characteristics of vegetation, soil and bacterial community after 20 years’ restoration of different tree species, we investigated changes in vegetation (tree, shrubs, and herbs), soil properties and the soil bacterial community composition in the topsoil (0–10 cm) following afforestation of P. asperata Mast. and L. kaempferi (Lamb.) Carr.on the southern slope of the Qinling mountains. The results showed that, within a 20-year recovery period, the restorative effect of L. kaempferi was better than that of P. asperata, for alpha diversity and biomass of vegetation, composition and diversity of soil bacterial community were all preferable under nearly same environmental conditions if just taking these indices into consideration. Additionally, biodiversity of L. kaempfer was much richer than that of P. asperata. Our observations suggest that soil physicochemical properties, soil bacterial community composition and diversity following afforestation were mainly affected by tree species. The results could explain our hypothesis to some extent that a planted forest with quick growth speed and sparse canopy has higher biomass productivity and alpha diversity of ecosystem.


Sign in / Sign up

Export Citation Format

Share Document