scholarly journals Coalitional Graph Game of Multi-Hop Clustering in Vehicular Ad-Hoc Networks

Author(s):  
Siwapon Charoenchai ◽  
Peerapon Siripongwutikorn

Abstract Road traffic information can be collected over a vehicular ad-hoc network (VANET) and utilized in many intelligent traffic system applications. A clustering mechanism is used to create a cluster of vehicles to facilitate the data collection from vehicles to road side units (RSUs) acting as sink nodes. Unlike previous works that focus on cluster lifetime or throughput, we propose a coalitional graph game (CGG) technique to form a multi-hop cluster with a largest possible coverage area for a given transmission delay time constraint to economize on the number of RSUs. Vehicles decide to join or leave the coalition based on their individual utility that is a weighted function of number of members in the coalition, relative velocities, distance to sink nodes, and transmission delay toward the sink nodes. The stability of cluster formation is proved by using a discrete-time Markov chain. Our results show that the proposed game model always yields a stable coalition structure that satisfies the objective, and the solutions vary with the weights given to individual components in the utility function.

Transport ◽  
2008 ◽  
Vol 23 (4) ◽  
pp. 291-298 ◽  
Author(s):  
Saleh Yousefi ◽  
Mahmood Fathy

In the recent years, direct message exchange between vehicles in order to improve the safety of road traffic has been attracting lots of interest in both networking and road safety communities. While travelling on a road, vehicles form an ad hoc network called Vehicular Ad hoc NETwork (VANET) and deploy life safety applications. Evaluating the performance of these applications is primordial for realizing VANETs in real life. Current literature lacks efficient ways to evaluate the performance of safety applications and mostly leverages on classical networking metrics like delay, delivery rate etc. In this paper, we consider both networking and safety concerns simultaneously to come up with more efficient methods. In particular, we first point out the significance of fairness and coverage from safety viewpoint. Then, we introduce two new metrics called beaconing rate and effective range aiming at providing more facilities for safety performance evaluation in VANET s research. Furthermore, realizing special characteristics of safety applications while disseminating beacon messages, we study the way that beacon dissemination protocols affect the performance of safety applications. We then conduct extensive simulation study to show the usefulness of the introduced metrics and derive some insights on the feasibility of driver‐assistant safety applications. Our evaluation also shows that sending the aggregated status of neighbouring vehicles in addition to vehicle's own status, and instead, increasing beacon transmission interval may be invoked in order to assist safety applications in providing satisfactory services to drivers.


2014 ◽  
Vol 1 (4) ◽  
pp. 197-207 ◽  
Author(s):  
Hamid Reza Arkian ◽  
Reza Ebrahimi Atani ◽  
Atefe Pourkhalili ◽  
Saman Kamali

Author(s):  
Ziyuan Wang ◽  
Lars Kulik ◽  
Kotagiri Ramamohanarao

Congestion is a major challenge in today’s road traffic. The primary cause is bottlenecks such as ramps leading onto highways, or lane blockage due to obstacles. In these situations, the road capacity reduces because several traffic streams merge to fewer streams. Another important factor is the non-coordinated driving behavior resulting from the lack of information or the intention to minimize the travel time of a single car. This chapter surveys traffic control strategies for optimizing traffic flow on highways, with a focus on more adaptive and flexible strategies facilitated by current advancements in sensor-enabled cars and vehicular ad hoc networks (VANETs). The authors investigate proactive merging strategies assuming that sensor-enabled cars can detect the distance to neighboring cars and communicate their velocity and acceleration among each other. Proactive merging strategies can significantly improve traffic flow by increasing it up to 100% and reduce the overall travel delay by 30%.


2019 ◽  
Vol 63 (2) ◽  
pp. 203-219 ◽  
Author(s):  
Mani Zarei

Abstract Vehicular ad hoc networks (VANETs) have emerged as an appropriate class of information propagation technology promising to link us even while moving at high speeds. In VANETs, a piece of information propagates through consecutive connections. In the most previous vehicular connectivity analysis, the provided probability density function of intervehicle distance throughout the wide variety of steady-state traffic flow conditions is surprisingly invariant. But, using a constant assumption, generates approximate communication results, prevents us from improving the performance of the current solutions and impedes designing the new applications on VANETs. Hence, in this paper, a mesoscopic vehicular mobility model in a multilane highway with a steady-state traffic flow condition is adopted. To model a traffic-centric distribution for the spatial per-hop progress and the expected spatial per-hop progress, different intervehicle distance distributions are utilized. Moreover, the expected number of hops, distribution of the number of successful multihop forwarding, the expected time delay and the expected connectivity distance are mathematically investigated. Finally, to model the distribution of the connectivity distances, a set of simplistic closed-form traffic-centric equations is proposed. The accuracy of the proposed model is confirmed using an event-based network simulator as well as a road traffic simulator.


Author(s):  
Libin Thomas ◽  
J Sandeep ◽  
Bhargavi Goswami ◽  
Joy Paulose

Vehicular ad-hoc networks are one of the most popular applications of Ad-hoc networks, where networks are formed without any sort of physical connecting medium and can be formed whenever required. It is an area in networks that has enjoyed a considerable amount of attention for quite some time. Due to the highly mobile environment where these networks find their usability, it can be understood that there are a lot of problems with respect to maintaining the communication links between the moving vehicular nodes and the static infrastructures which act as the access points (AP) for these moving vehicular mobile nodes (MN). The coverage area of each AP is limited and as such, the connections need to be re-established time and again between the MNs and the closest accessible AP. Handoff is the process involved here, which deals with selecting the optimal APs as well as the best network available for data transmission. In this article, the authors compare various handoff methods and categorize them based on the different approaches they follow.


2014 ◽  
Vol 77 (4) ◽  
pp. 2497-2515 ◽  
Author(s):  
Sardar Muhammad Bilal ◽  
Atta ur Rehman Khan ◽  
Samee Ullah Khan ◽  
Sajjad A. Madani ◽  
Babar Nazir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document