scholarly journals Sub-MHz spectral dip in a resonator-free twistedgain medium

Author(s):  
Neel Choksi ◽  
Yi Liu ◽  
Rojina Ghasemi ◽  
Li Qian

Abstract Ultra-narrow optical spectral features have broad applications in spectroscopy, slow light, and sensing. Features approaching sub-MHz, or equivalently, Q-factors approaching 1 billion and beyond, are challenging to obtain in solid-state systems, ultimately limited by loss. We present a new paradigm to achieve tunable sub-MHz spectral features at room temperature without resonators. We exploit gain-enhanced polarization pulling in a twisted birefringent medium where polarization eigenmodes are frequency-dependent. Using Brillouin gain in a commercial spun fiber, we experimentally achieve a 0.72 MHz spectral dip, the narrowest backward Brillouin scattering feature ever reported. Further optimization can potentially reduce the linewidth to <0.1 MHz. Our approach is simple and broadly applicable, offering on-demand tunability and high sensitivity, opening a new paradigm for microwave photonic filters, slow light, and optical sensing.

2021 ◽  
Author(s):  
Neel Choksi ◽  
Yi Liu ◽  
Rojina Ghasemi ◽  
Li Qian

Abstract Ultra-narrow optical spectral features have broad applications in spectroscopy, slow light, and sensing. Features approaching sub-MHz, or equivalently, Q-factors approaching 1 billion and beyond, are challenging to obtain in solid-state systems, ultimately limited by loss. We present a new paradigm to achieve tunable sub-MHz spectral features at room temperature without resonators. We exploit gain-enhanced polarization pulling in a twisted birefringent medium where polarization eigenmodes are frequency-dependent. Using Brillouin gain in a commercial spun fiber, we experimentally achieve a 0.72 MHz spectral dip, the narrowest backward Brillouin scattering feature ever reported. Further optimization can potentially reduce the linewidth to <0.1 MHz. Our approach is simple and broadly applicable, offering on-demand tunability and high sensitivity, opening a new paradigm for microwave photonic filters, slow light, and optical sensing.


Author(s):  
Chong Xing ◽  
Dongcheng Xie ◽  
Haochen Zhang ◽  
Kang Song ◽  
Lei Yang ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Li ◽  
Yang Li ◽  
Peng Li ◽  
Bin Fang ◽  
Xu Yang ◽  
...  

AbstractNonmagnetic Rashba systems with broken inversion symmetry are expected to exhibit nonreciprocal charge transport, a new paradigm of unidirectional magnetoresistance in the absence of ferromagnetic layer. So far, most work on nonreciprocal transport has been solely limited to cryogenic temperatures, which is a major obstacle for exploiting the room-temperature two-terminal devices based on such a nonreciprocal response. Here, we report a nonreciprocal charge transport behavior up to room temperature in semiconductor α-GeTe with coexisting the surface and bulk Rashba states. The combination of the band structure measurements and theoretical calculations strongly suggest that the nonreciprocal response is ascribed to the giant bulk Rashba spin splitting rather than the surface Rashba states. Remarkably, we find that the magnitude of the nonreciprocal response shows an unexpected non-monotonical dependence on temperature. The extended theoretical model based on the second-order spin–orbit coupled magnetotransport enables us to establish the correlation between the nonlinear magnetoresistance and the spin textures in the Rashba system. Our findings offer significant fundamental insight into the physics underlying the nonreciprocity and may pave a route for future rectification devices.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 641
Author(s):  
Yuan Zhai ◽  
Yi Xiang ◽  
Weiqing Yuan ◽  
Gang Chen ◽  
Jinliang Shi ◽  
...  

High sensitivity detection of terahertz waves can be achieved with a graphene nanomesh as grating to improve the coupling efficiency of the incident terahertz waves and using a graphene nanostructure energy gap to enhance the excitation of plasmon. Herein, the fabrication process of the FET THz detector based on the rectangular GNM (r-GNM) is designed, and the THz detector is developed, including the CVD growth and the wet-process transfer of high quality monolayer graphene films, preparation of r-GNM by electron-beam lithography and oxygen plasma etching, and the fabrication of the gate electrodes on the Si3N4 dielectric layer. The problem that the conductive metal is easy to peel off during the fabrication process of the GNM THz device is mainly discussed. The photoelectric performance of the detector was tested at room temperature. The experimental results show that the sensitivity of the detector is 2.5 A/W (@ 3 THz) at room temperature.


Sign in / Sign up

Export Citation Format

Share Document