scholarly journals The relationship between tectonism and desertification inferred from the provenance and lithofacies changes of the Cenozoic terrestrial sequence of the southwestern Tarim basin

2020 ◽  
Author(s):  
Aki Sakuma ◽  
Ryuji Tada ◽  
Tomohiro Yoshida ◽  
Hitoshi Hasegawa ◽  
Naomi Sugiura ◽  
...  

Abstract The Tarim basin is one of the most arid areas in the world and its major part is occupied by the Taklimakan desert. Although unraveling the history of aridification of Taklimakan desert is important to understand the global climate change during the Cenozoic, the timing and the mechanism of its formation are still controversial. One of the hypotheses is that the uplift of the Pamir locating to the west of the Tarim basin blocked the intrusion of the moist air and induced the aridification in the Tarim basin. In this study, we explored the linkage between the uplift of the Pamir and the desertification in the Tarim basin during the period from the late Eocene to the middle Miocene. Provenance changes of the fluvial deposits along the Aertashi section, which is located in the southwestern edge of the Tarim basin and offers the longest record with the reliable age model, was examined using Electron Spin Resonance (ESR) signal intensity and crystallinity index (CI) of quartz in the sand fraction of fluvial sandstone and the thin section observation to identify the timings of tectonic events in the Pamir from which clastic materials were supplied by rivers. Our results suggest that major provenance changes in the drainage of the river delivering the clasts to the Aertashi section occurred at ca. 26 Ma, 20 Ma, and 15 Ma. These timings are mostly consistent with the timings observed in the previous provenance studies in the Aertashi section and probably reflect tectonic events in the Pamir. On the other hand, the Tarim basin was under the relatively arid condition after ca. 34 Ma based on the first occurrence of sand dune deposit. Hence, our result does not support the hypothesis that the onset of the aridification in the Tarim basin was caused by the uplift of the Pamir and consequent shut down of the moisture supply from the Paratethys Sea although the afterward intensification of tectonic events in the Pamir might be related to the phased uplift.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Aki Sakuma ◽  
Ryuji Tada ◽  
Tomohiro Yoshida ◽  
Hitoshi Hasegawa ◽  
Naomi Sugiura ◽  
...  

AbstractThe modern-day Tarim Basin is covered almost entirely by the Taklimakan sand desert and is one of the most arid regions in the world. Unraveling the aridification history of the desert is important for understanding global climate changes during the Cenozoic, yet the timing and mechanisms driving its formation remain controversial. One of the leading hypotheses is that the uplift of the Pamir, located to the west of the Tarim Basin, blocked the intrusion of moist air and induced the aridification in the Tarim Basin. In this study, we explore the linkage between the uplift of the Pamir and the desertification in the Tarim Basin from the late Eocene to the middle Miocene in the Aertashi section, which is located at the southwestern edge of the Tarim Basin and offers the longest sedimentary record with a reliable age model. Provenance changes in fluvial deposits along the Aertashi section were examined using electron spin resonance (ESR) signal intensity and crystallinity index (CI) of quartz in the sand fraction of fluvial sandstones and clast counting based on the identification of clast types by thin section observation to identify timings of tectonic events in the Pamir, from which clastic materials were supplied to the Aertashi section by rivers. Our results suggest that major provenance changes in the drainage of the paleo-Yarkand river delivering clasts to the Aertashi section occurred at ca. 27, 20, and 15 Ma. These timings are mostly consistent with those observed in previous provenance studies in the Aertashi section and probably reflect tectonic events in the Pamir. On the other hand, according to the previous studies, the first occurrence of sand dune deposits indicates that the Tarim Basin was relatively arid after ca. 34 Ma. Hence, our result does not support the hypothesis that the initial aridification in the Tarim Basin was triggered by the uplift of the Pamir and the resultant blocking of moisture supply from the Paratethys Sea, although the subsequent intensification of tectonic events at ca. 27 Ma in the Pamir might have caused aridification indicated by the initiation of loess deposition.


2020 ◽  
Author(s):  
Qin Yuan ◽  
Natasha Barbolini ◽  
Catarina Rydin ◽  
Dong-Lin Gao ◽  
Hai-Cheng Wei ◽  
...  

Abstract. Central Asia experienced a number of significant elevational and climatic changes during the Cenozoic, but much remains to be understood regarding the timing and driving mechanisms of these changes, as well as their influence on ancient ecosystems. Here we describe the palaeoecology and palaeoclimate of a new section from the Nangqian Basin in Tibet, northwestern China, here dated as late Lutetian–Bartonian (late middle–late Eocene) based on our palynological analyses. Located on the east-central part of the Tibetan Plateau, this section is excellently placed for better understanding the palaeoecological history of Tibet following the India-Asia collision. Our new pollen record reveals that a strongly seasonal steppe-desert ecosystem characterised by drought-tolerant shrubs, diverse ferns and an underlying component of broad-leaved forests existed in east-central Tibet during the Eocene, influenced by a southern monsoon. Warming during the Middle Eocene Climatic Optimum only prompted a temporary vegetation response, while a drying signature in our pollen record after 40 Ma demonstrates that proto-Paratethys sea retreat caused widespread long-term aridification across the plateau. To better distinguish between local climatic variation and farther-reaching drivers of Central Asian palaeoclimate and elevation, we correlated key palynological sections across the Tibetan Plateau by means of established radioisotopic ages and biostratigraphy. This new palynozonation illustrates both intra- and inter-basinal floral response to plateau uplift and global climate change during the Paleogene, and provides a framework for the age assignment of future palynological studies in Central Asia. Our work highlights the ongoing challenge of integrating various deep time records for the purpose of reconstructing palaeoelevation, indicating that a multiproxy approach is vital for unravelling the complex uplift history of the Tibetan Plateau and its resulting influence on Asian climate.


2021 ◽  
Author(s):  
◽  
Evelien Van de Ven

<p>Antarctica plays a central role in the global climate system. Understanding the continent's past climate interactions is key to predicting its future response to, and influence on, global climate change. In recent decades, sediment cores drilled on the Antarctic continental margin have provided direct evidence of past climatic and tectonic events. Drilled in 1986 from sea ice in western McMurdo Sound, the pioneering 702 m-long CIROS-1 core extended back to the Late Eocene and provided some of the first evidence of the antiquity and history of the Antarctic ice sheets. The CIROS-1 drill core recovered a depositional history of the western margin of the Victoria Land Basin adjacent to the Trans-Antarctic Mountains. It was located directly offshore from where the Ferrar Glacier, which drains the East Antarctic Ice Sheet, discharges into the Ross Sea. Consequently CIROS-1 contains a record of both the glacial and tectonic Cenozoic evolution of the Antarctic margin. This thesis provides a timely re-evaluation of the CIROS-1 core with new analysis techniques that enable further insights into the glacial and tectonic history of the western Ross Sea region, and includes three key objectives:  (1) Re-examine CIROS-1 sedimentology and stratigraphy and provide a new facies and sequence stratigraphic analysis using modern methods developed from recent drilling projects (e.g. CRP, ANDRILL).  (2) Develop a new integrated chronostratigraphic model through an assessment and compilation of previous studies, which provides a context for the interpretation of detrital zircon data, climate and tectonic history. (3) Undertake a detailed examination of the provenance of CIROS-1 sediments using cutting edge in situ analysis techniques of detrital zircons (U-Pb and trace element analysis using LA-ICP-MS).  Glaciomarine sequence stratigraphic analysis identifies 14 unconformity-bound sequences occurring in two distinctive stratigraphic motifs. The four sequences located beneath the 342 mbsf unconformity contain relatively complete vertical facies succession. They were deposited in shallow marine, fluvio-deltaic conditions with distal glaciers terminating on land, and possibly calving into the ocean in adjacent valleys as evidenced by occasional ice-rafted debris. The ten sequences located above ~342 mbsf have a fundamentally different architecture. They are incomplete (top-truncated), contain subglacial and ice proximal facies grading upsequence into distal glaciomarine and shelf conditions. Top truncation of these sequences represents overriding of the CIROS-1 site by the paleo-Ferrar Glacier during glacial phases.  A revised age model for CIROS-1 is presented that utilises new calibrations for Antarctic diatom zones and compiles three previously published age models for different sections of the core (Roberts et al., 2003; Wilson et al., 1998; Hannah et al., 1997). The new age model allows correlation of Late Oligocene cycles with coeval cycles in CRP-2/2A, 80 km to the north. A fundamental orbital control on the dynamics of these East Antarctic Ice Sheet outlet glaciers is evident from this comparison. Both glacier systems respond in-phase to longer-period orbital components (e.g. eccentricity 100 kyr and 400 kyr), but differ in their sensitivity to precession (20 kyr). It appears that during the Late Oligocene the Ferrar catchment responded to 20 kyr precession cycles, whilst the larger MacKay Glacier, which is more directly connected to the East Antarctic Ice Sheet, responded to longer duration 125 kyr (eccentricity) forcing.  CIROS-1 zircons group into four distinct geochemical suites. Zircons formed in felsic igneous environments dominate the CIROS-1 population, with 89 % of zircons analysed showing geochemical characteristics inherent to granitic/rhyolitic zircons. Approximately 7 % of CIROS-1 zircons have a highly trace element enriched igneous provenance and were most probably sourced from enriched enclaves in granitic/rhyolitic units or from pegmatites. Approximately 3 % of CIROS-1 zircons show a metamorphic geochemical signature, and ~1 % formed in trace element depleted igneous environments. The zircons were sourced from the local basement (Koettlitz, Granite Harbour Groups), the Beacon Supergroup, and potentially, lithologies of the East Antarctic Craton located under the ice, or components of the Trans-Antarctic Mountains located under the current baseline of geologic exposure.  Large-scale, systematic temporal trends in zircon characteristics have been divided into three distinct climatic periods: Zone 1 (702-366 mbsf, Late Eocene), Zone 2 (366-250 mbsf, Late Oligocene) and Zone 3 (< 250 mbsf, Late Oligocene and Early Miocene). Zircons deposited during these periods show unique properties. During Zone 1, Antarctica experienced a relatively warm temperate climate and alpine style glaciers flowed eastwards through the Trans-Antarctic Mountains. Zircons in this zone contain a subtle record of unroofing of geochemically zoned Granite Harbour and Koettlitz units located in the Ferrar Valley. During Zone 2 deposition, glaciers flowed though the Trans-Antarctic Mountains draining a large and ephemeral EAIS, which oscillated on orbital time scales. Zircons in this interval show variable properties, high numbers and were most probably deposited as the paleo-Ferrar Glacier deeply incised the Ferrar Fiord. In contrast, Zone 3 is characterised by a flux of McMurdo Volcanic Complex derived sediments, together with systematic changes in zircon characteristics. These patterns indicate a Late Oligocene shift in ice flow to the site (above ~250 mbsf). Due to a cooling that culminated in the Mi-1 glaciation, ice flow to the site changed from an eastward to a northward flow, in response to an increased ice volume in the Ross embayment.</p>


2021 ◽  
Author(s):  
◽  
Evelien Van de Ven

<p>Antarctica plays a central role in the global climate system. Understanding the continent's past climate interactions is key to predicting its future response to, and influence on, global climate change. In recent decades, sediment cores drilled on the Antarctic continental margin have provided direct evidence of past climatic and tectonic events. Drilled in 1986 from sea ice in western McMurdo Sound, the pioneering 702 m-long CIROS-1 core extended back to the Late Eocene and provided some of the first evidence of the antiquity and history of the Antarctic ice sheets. The CIROS-1 drill core recovered a depositional history of the western margin of the Victoria Land Basin adjacent to the Trans-Antarctic Mountains. It was located directly offshore from where the Ferrar Glacier, which drains the East Antarctic Ice Sheet, discharges into the Ross Sea. Consequently CIROS-1 contains a record of both the glacial and tectonic Cenozoic evolution of the Antarctic margin. This thesis provides a timely re-evaluation of the CIROS-1 core with new analysis techniques that enable further insights into the glacial and tectonic history of the western Ross Sea region, and includes three key objectives:  (1) Re-examine CIROS-1 sedimentology and stratigraphy and provide a new facies and sequence stratigraphic analysis using modern methods developed from recent drilling projects (e.g. CRP, ANDRILL).  (2) Develop a new integrated chronostratigraphic model through an assessment and compilation of previous studies, which provides a context for the interpretation of detrital zircon data, climate and tectonic history. (3) Undertake a detailed examination of the provenance of CIROS-1 sediments using cutting edge in situ analysis techniques of detrital zircons (U-Pb and trace element analysis using LA-ICP-MS).  Glaciomarine sequence stratigraphic analysis identifies 14 unconformity-bound sequences occurring in two distinctive stratigraphic motifs. The four sequences located beneath the 342 mbsf unconformity contain relatively complete vertical facies succession. They were deposited in shallow marine, fluvio-deltaic conditions with distal glaciers terminating on land, and possibly calving into the ocean in adjacent valleys as evidenced by occasional ice-rafted debris. The ten sequences located above ~342 mbsf have a fundamentally different architecture. They are incomplete (top-truncated), contain subglacial and ice proximal facies grading upsequence into distal glaciomarine and shelf conditions. Top truncation of these sequences represents overriding of the CIROS-1 site by the paleo-Ferrar Glacier during glacial phases.  A revised age model for CIROS-1 is presented that utilises new calibrations for Antarctic diatom zones and compiles three previously published age models for different sections of the core (Roberts et al., 2003; Wilson et al., 1998; Hannah et al., 1997). The new age model allows correlation of Late Oligocene cycles with coeval cycles in CRP-2/2A, 80 km to the north. A fundamental orbital control on the dynamics of these East Antarctic Ice Sheet outlet glaciers is evident from this comparison. Both glacier systems respond in-phase to longer-period orbital components (e.g. eccentricity 100 kyr and 400 kyr), but differ in their sensitivity to precession (20 kyr). It appears that during the Late Oligocene the Ferrar catchment responded to 20 kyr precession cycles, whilst the larger MacKay Glacier, which is more directly connected to the East Antarctic Ice Sheet, responded to longer duration 125 kyr (eccentricity) forcing.  CIROS-1 zircons group into four distinct geochemical suites. Zircons formed in felsic igneous environments dominate the CIROS-1 population, with 89 % of zircons analysed showing geochemical characteristics inherent to granitic/rhyolitic zircons. Approximately 7 % of CIROS-1 zircons have a highly trace element enriched igneous provenance and were most probably sourced from enriched enclaves in granitic/rhyolitic units or from pegmatites. Approximately 3 % of CIROS-1 zircons show a metamorphic geochemical signature, and ~1 % formed in trace element depleted igneous environments. The zircons were sourced from the local basement (Koettlitz, Granite Harbour Groups), the Beacon Supergroup, and potentially, lithologies of the East Antarctic Craton located under the ice, or components of the Trans-Antarctic Mountains located under the current baseline of geologic exposure.  Large-scale, systematic temporal trends in zircon characteristics have been divided into three distinct climatic periods: Zone 1 (702-366 mbsf, Late Eocene), Zone 2 (366-250 mbsf, Late Oligocene) and Zone 3 (< 250 mbsf, Late Oligocene and Early Miocene). Zircons deposited during these periods show unique properties. During Zone 1, Antarctica experienced a relatively warm temperate climate and alpine style glaciers flowed eastwards through the Trans-Antarctic Mountains. Zircons in this zone contain a subtle record of unroofing of geochemically zoned Granite Harbour and Koettlitz units located in the Ferrar Valley. During Zone 2 deposition, glaciers flowed though the Trans-Antarctic Mountains draining a large and ephemeral EAIS, which oscillated on orbital time scales. Zircons in this interval show variable properties, high numbers and were most probably deposited as the paleo-Ferrar Glacier deeply incised the Ferrar Fiord. In contrast, Zone 3 is characterised by a flux of McMurdo Volcanic Complex derived sediments, together with systematic changes in zircon characteristics. These patterns indicate a Late Oligocene shift in ice flow to the site (above ~250 mbsf). Due to a cooling that culminated in the Mi-1 glaciation, ice flow to the site changed from an eastward to a northward flow, in response to an increased ice volume in the Ross embayment.</p>


Tectonics ◽  
2008 ◽  
Vol 27 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Julien Collot ◽  
Louis Geli ◽  
Yves Lafoy ◽  
Roland Vially ◽  
Dominique Cluzel ◽  
...  

2012 ◽  
Vol 11 (4) ◽  
pp. 189-202 ◽  
Author(s):  
Fabio Rodrigues ◽  
Douglas Galante ◽  
Ivan G. Paulino-Lima ◽  
Rubens T.D. Duarte ◽  
Amancio C.S. Friaça ◽  
...  

AbstractThis review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies.


2021 ◽  
pp. SP523-2021-73
Author(s):  
D. V. Palcu ◽  
W. Krijgsman

AbstractA complex interplay of palaeoclimatic, eustatic and tectonic processes led to fragmentation and dissipation of the vast Tethys Ocean in Eocene-Oligocene times. The resulting Paratethys Sea occupied the northern Tethys region on Eurasia, grouping water masses of various subbasins, separated from each other and from the open ocean through narrow and shallow gateways and land bridges. Changes in marine gateway configuration and intra-basinal connectivity affected the regional hydrology, shifting most Paratethyan basins to extreme carbon-sink anoxic environments, anomalohaline evaporitic or brackish conditions or even endorheic lakes. Paratethys gateway restriction triggered the onset of a long-lasting (∼20 Myr) giant anoxic sea, characterised by stratified water masses and anoxic bottom water conditions, resulting in thick hydrocarbon source rocks. Here, we review the geological evolution of the “dire straits” of Paratethys that played a crucial role in the Eocene-Oligocene connectivity history of the Central Eurasian seas and we show that the main anoxic phases (Kuma and Maikop) correspond to restricted connectivity with the global ocean and a period of CO2 depletion in the atmosphere. Paratethys represents one of the largest carbon sinks of Earth's history and may thus have played a prominent role in global climate change.


Author(s):  
Jingyu Zhang ◽  
Fengcun Xing ◽  
Wout Krijgsman ◽  
Cheng Zhang ◽  
Wei Wei ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document