scholarly journals Indigofera Tinctoria Leaf Powder As A Promising Additive To Improve Indigo Fermentation Prepared With Sukumo (Composted Polygonum Tinctorium Leaves)

Author(s):  
Helena de Fátima Silva Lopes ◽  
Zhihao Tu ◽  
Hisako Sumi ◽  
Isao Yumoto

Abstract Being insoluble in the oxidize form, indigo dye must be solubilized by reduction for it to penetrate textile. One of the procedures is the reduction by natural bacterial fermentation. Sukumo, composted leaves of Polygonum tinctorium, is a natural source of indigo in Japan. Although sukumo has an intrinsic bacterial seed, the onset of indigo reduction with this material may vary greatly. Certain additives improve indigo fermentation. Here, we studied the effects of Indigofera tinctoria leaf powder (LP) on the initiation of indigo reduction, bacterial community, redox potential (ORP), and dyeing intensity in the initial stages and in aged fermentation fluids prepared with sukumo. I. tinctoria LP markedly decreased ORP at day 1 and stabilised it during early fermentation. These effects could be explained by the phytochemicals present in I. tinctoria LP that act as oxygen scavengers and electron mediators. Using next generation sequencing results, we observed differences in the bacterial community in sukumo fermentation treated with I. tinctoria LP, which was not influenced by the bacterial community in I. tinctoria LP per se. The concomitant decrease in Bacillaceae and increase in Proteinivoraceae at the onset of fermentation and the ratio of facultative to obligate anaerobes are vital to the for initiation and maintenance of indigo reduction. Hence, I. tinctoria LP improved early indigo reduction by decreasing the ORP and hasten the appropriate transitions in the bacterial community in sukumo fermentation.

2017 ◽  
Vol 82 (4) ◽  
pp. 960-968 ◽  
Author(s):  
Mi-Hwa Lee ◽  
Fan-Zhu Li ◽  
Jiyeon Lee ◽  
Jisu Kang ◽  
Seong-Il Lim ◽  
...  

2015 ◽  
Vol 82 (3) ◽  
pp. 778-787 ◽  
Author(s):  
Yu-Xiang Yang ◽  
Chun-Long Mu ◽  
Zhen Luo ◽  
Wei-Yun Zhu

ABSTRACTBromochloromethane (BCM), an inhibitor of methanogenesis, has been used in animal production. However, little is known about its impact on the intestinal microbiota and metabolic patterns. The present study aimed to investigate the effect of BCM on the colonic bacterial community and metabolism by establishing a Wistar rat model. Twenty male Wistar rats were randomly divided into two groups (control and treated with BCM) and raised for 6 weeks. Bacterial fermentation products in the cecum were determined, and colonic methanogens and sulfate-reducing bacteria (SRB) were quantified. The colonic microbiota was analyzed by pyrosequencing of the 16S rRNA genes, and metabolites were profiled by gas chromatography and mass spectrometry. The results showed that BCM did not affect body weight and feed intake, but it did significantly change the intestinal metabolic profiles. Cecal protein fermentation was enhanced by BCM, as methylamine, putrescine, phenylethylamine, tyramine, and skatole were significantly increased. Colonic fatty acid and carbohydrate concentrations were significantly decreased, indicating the perturbation of lipid and carbohydrate metabolism by BCM. BCM treatment decreased the abundance of methanogen populations, while SRB were increased in the colon. BCM did not affect the total colonic bacterial counts but significantly altered the bacterial community composition by decreasing the abundance of actinobacteria, acidobacteria, and proteobacteria. The results demonstrated that BCM treatment significantly altered the microbiotic and metabolite profiles in the intestines, which may provide further information on the use of BCM in animal production.


2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Karunia Adetera Nungki Wijayanti ◽  
Indah Istiqomah ◽  
Murwantoko Murwantoko

Abstract. Wijayanti KAN, Istiqomah I, Murwantoko. 2021. Bacterial abundance and community composition in green, brown and red water from intensive Catfish (Clarias sp.) culture ponds in Yogyakarta, Indonesia. Biodiversitas 22: 3677-3684. Catfish (Clarias sp.) is an important aquaculture commodity in Indonesia and cultured in an intensive system. Microorganisms play an important role in maintaining water quality of aquaculture system. The objective of this study was to determine the bacterial abundance and community composition of green, brown and red water collected from intensive catfish culture ponds in Yogyakarta using next-generation sequencing method. The water samples were collected from intensive catfish culture ponds with different colors, namely green, brown and red ponds located in Yogyakarta. The DNA from water samples was extracted using DNA extraction kit and used as template for 16S rRNA amplification. The V3-V4 hypervariable regions of the 16S rRNA gene were amplified apply for next-generation sequencing technology. This study could explore effectively the bacterial community in water samples. The bacterial communities in this catfish culture water showed higher bacterial richness compared to the other aquaculture system. The diversity of the green, brown and red catfish culture water ponds was similar with the number OTUs of the green, brown and red water samples, which were 1269; 1387 and 1323 OTUs respectively. The 694 OTUs (34.42%) were common core microbiomes in all catfish culture ponds, the 212 OTUs (10.51%) are present on green and brown water ponds, the 182 OTUs (9.02%) were on green and red water ponds, and the 183 OTUs (9.07%) were present on green and brown water ponds. However, the composition of the bacterial community was different. The most dominant phylum in green and brown water ponds was Proteobacteria with relative abundance in green water and brown water 71.6% and 47.0% respectively, whereas, the most dominant phylum in red water was Firmicutes (29.5%). The dominance of Firmicutes phylum in red water ponds may be caused by application of probiotic bacteria, the high organic content, and low oxygen concentration.


2018 ◽  
Vol 16 (3) ◽  
pp. 543-551
Author(s):  
Tran Trung Thanh ◽  
Nathan Bott ◽  
Le Hoang Duc ◽  
Dang Thi Hoang Oanh ◽  
Nguyen Trung Nam ◽  
...  

Gut bacteria comprise a complex bacterial community related to many functions in a host. The stability of gut bacteria plays important models in the health and immunology of a host. Many studies on intestine bacteria constructed via cultivation and Denaturation Gradient Gel Electrophoresis (DDGE) methods have proved a limited efficiency. In order to tackle these drawbacks, the next generation sequencing method was developed on 16S-rRNA-based sequences (Metabarcoding). The composition of bacterial communities was revealed based on the analysis of 16S rRNA sequences of intestine bacteria in Litopenaeus vannamei ponds in comparison with microbial communities in a Penaeus monodon pond and a muscle of shrimp. These results showed that the dominant phyla of intestine bacteria in Litopenaeus vannamei were Proteobacteria (49.3–57.4%), Firmicutes (15.6–34.4%) and Bacteroidetes (0.1–16.9%). Rhizobium(0.4%-26.1%), Vibrio(0–23.9%) and Spongiimonas(0–16,7%) were dominant genera in Litopenaeus vannamei gut. A higher proportion of Fusobacterium (10%), a shrimp pathogen group, was found in a disease shrimp pond (ST4) in comparison with a low growth shrimp pond (ST3) (0%) and a healthy shrimp pond (ST1) (0.6%). Vibrio was marked as shrimp pathogen genus accounted for 22.3% of total genera in ST4 in comparison with 2.4% in ST3 and 3.5% in ST1. Interestingly, a higher percentage of Vibrio rotiferianus (7.98%) was found in ST4 compared to ST3 (1%) and ST1 (0%). Fusobacterium and Vibrio will be the objects for the next experiments to discover shrimp pathogens specifically.


2017 ◽  
Vol 66 (4) ◽  
pp. 537-541 ◽  
Author(s):  
Hongbin Wang ◽  
Quanzeng Wei ◽  
Shuqi Gui ◽  
Yongrui Feng ◽  
Yong Zhang ◽  
...  

The improvement of soy sauce fermentation is restricted by the insufficient information on bacterial community. In this study, bacterial communities in the koji and mash stage were compared based on next-generation sequencing technology. A total of 29 genera were identified in the koji stage, while 34 in the mash stage. After koji stage, 7 genera disappeared and 12 new genera appeared in the mash stage. The dominant bacteria were Kurthia, Weissella and Staphylococcus in the koji stage and Staphylococcus, Kurthia, Enterococcus and Leuconostoc in the mash stage. The results provided insights into the microbial communities involved in soy sauce fermentation.


Sign in / Sign up

Export Citation Format

Share Document