scholarly journals Non-circular Signal DOA Estimation based on Coprime Array MIMO Radar

Author(s):  
Fei Zhang ◽  
Chuantang Ji ◽  
Zijing Zhang ◽  
Dayu Yin ◽  
Yi Wang

Abstract Aiming at the problems of low degree of freedom, small array aperture, phase ambiguity and other problems of traditional coprime array direction of arrival estimation methods, a non-circular signal DOA estimation method based on expanded coprime array MIMO radar is proposed. Firstly, this method combines the coprime array and the MIMO radar to form transmitter and receiver array. Secondly, the array is expanded using the non-circular signal characteristics to reconstruct the received signal matrix. Then the dimensionality reduction is performed. The two-dimensional spectral peak search is converted into an optimization problem, and the optimization of the two-dimensional MUSIC algorithm is reconstructed using constraints, and a cost function is constructed to solve the problem. In addition, using the power series of the noise eigenvalues to correct the noise subspace to further improve the accuracy of the algorithm. Finally, the problem of no phase ambiguity in the method in this article is derived. Simulation experiments show that the method in this article can effectively avoid phase ambiguity, greatly improve the degree of freedom, and expand the array aperture. Compared with the traditional MUSIC algorithm and the mutual prime array MUSIC algorithm, it has better resolution and DOA estimation accuracy.

Author(s):  
Fei Zhang ◽  
Chuantang Ji ◽  
Zijing Zhang ◽  
Dayu Yin ◽  
Yi Wang

AbstractAiming at the problems of low degree of freedom, small array aperture, and phase ambiguity in traditional coprime array direction-of-arrival estimation methods, a non-circular signal DOA estimation method based on expanded coprime array MIMO radar is proposed. Firstly, this method combines the coprime array and the MIMO radar to form transmitter and receiver array. Secondly, the array is expanded using the non-circular signal characteristics to reconstruct the received signal matrix. Then the dimensionality reduction is performed. The two-dimensional spectral peak search is converted into an optimization problem, and the optimization of the two-dimensional MUSIC algorithm is reconstructed using constraints, and a cost function is constructed to solve the problem. In addition, use the power series of the noise eigenvalues to correct the noise subspace to further improve the accuracy of the algorithm. Finally, the problem of no phase ambiguity in the method in this article is derived. Simulation experiments show that the method in this article can effectively avoid phase ambiguity, greatly improve the degree of freedom, and expand the array aperture. Compared with the traditional MUSIC algorithm and the mutual prime array MUSIC algorithm, it has better resolution and DOA estimation accuracy.


2021 ◽  
Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

Abstract Aiming at the problem that traditional Direction of Arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degree of freedom, a new method of 2-D DOA estimation based on coprime array MIMO Radar (SA-MIMO-CA). Frist of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. The array model uses a special irregular array as the transmitting array and a uniform linear array as the receiving array. Besides, in order to reduce complexity and improve the accuracy of two-dimensional DOA estimation, a new two-dimensional DOA estimation method based on sparse array is proposed. This method uses the sparse array topology of virtual array elements to analyze a larger number of information sources, and combines the compressed sensing method to process the sparse array, and obtains a larger array aperture with a smaller number of array elements, and improves the resolution of the azimuth angle. This method improves the DOA estimation accuracy and reduces the complexity. Finally, experiments verify the effectiveness and reliability of the SA-MIMO-CA method in improving the degree of freedom of the array, reducing the complexity, and improving the accuracy of the DOA.


Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

AbstractAiming at the problem that traditional direction of arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degrees of freedom (DOF), a new method for 2-D DOA estimation based on coprime array MIMO radar (SA-MIMO-CA) is proposed. First of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. This method is based on a new MIMO array-based co-prime array model (MIMO-CA), which improves the accuracy of multi-source estimation when the number of array elements is limited, and obtains a larger array aperture with a smaller number of array elements, and improves the estimation accuracy of 2-D DOA. Finally, the effectiveness and reliability of the proposed SM-MIMO-CA method in improving the DOF of array and DOA accuracy are verified by experiments.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yan-kui Zhang ◽  
Hai-yun Xu ◽  
Da-ming Wang ◽  
Bin Ba ◽  
Si-yao Li

The existing coprime array is mainly applicable to circular sources, while the virtual array degree of freedom (DOF) for noncircular sources is enhanced limitedly. In order to perfect the array DOF and the direction of arrival (DOA) estimation accuracy, a high degree of freedom sparse array design method for noncircular sources is put forward. Firstly, the method takes the advantages of the characteristic of the noncircular sources to expand the array manifold and then explores and solves the location distribution of the physical array sensors on the basis of the virtual array model with the help of the searching approach. The array configuration can obtain the longest continuous virtual array. The comparisons between the proposed array configuration and the common array configurations are advanced. The simulation experiments show that the sparse array presented in this paper can effectively increase the continuous virtual array aperture of noncircular sources, improve the array DOF and DOA estimation accuracy, and achieve the purpose of better estimation of multiple DOAs in underdetermined conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fangqing Wen ◽  
Gong Zhang

A low complexity monostatic cross multiple-in multiple-out (MIMO) radar scheme is proposed in this paper. The minimum-redundancy linear array (MRLA) is introduced in the cross radar to improve the efficiency of the array elements. The two-dimensional direction-of-arrival (DOA) estimation problem links to the trilinear model, which automatically pairs the estimated two-dimensional angles, requiring neither eigenvalue decomposition of received signal covariance matrix nor spectral peak searching. The proposed scheme performs better than the uniform linear arrays (ULA) configuration under the same conditions, and the proposed algorithm has less computational complexity than that of multiple signal classification (MUSIC) algorithm. Simulation results show the effectiveness of our scheme.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yule Zhang ◽  
Guoping Hu ◽  
Hao Zhou ◽  
Mingming Zhu ◽  
Fei Zhang

A novel generalized nested multiple-input multiple-output (MIMO) radar for direction of arrival (DOA) estimation is proposed in this paper. The proposed structure utilizes the extended two-level nested array (ENA) as transmitter and receiver and adjusts the interelement spacing of the receiver with an expanding factor. By optimizing the array element configuration, we can obtain the best number of elements of the transmitter and receiver and the attainable degrees of freedom (DOF). Compared with the existing nested MIMO radar, the proposed MIMO array configuration not only has closed-form expressions for sensors’ positions and the number of maximum DOF, but also significantly improves the array aperture. It is verified that the sum-difference coarray (SDCA) of the proposed nested MIMO radar can get higher DOF without holes. MUSIC algorithm based on Toeplitz matrix reconstruction is employed to prove the rationality and superiority of the proposed MIMO structure.


2018 ◽  
Vol 22 (12) ◽  
pp. 2495-2498 ◽  
Author(s):  
Jianfeng Li ◽  
Yunxiang Li ◽  
Xiaofei Zhang

2018 ◽  
Vol 232 ◽  
pp. 02052
Author(s):  
Tianhao Cheng ◽  
Buhong Wang ◽  
Qiaoge Liu ◽  
Jiwei Tian

In order to reduce the loss of Degree of Freedom (DOF) brought by the transmit subarray splitting of two-dimensional hybrid phased-MIMO radar, this paper presents a design method of transmitting and receiving array based on nested array structure. Firstly, a two-dimensional hybrid phased-MIMO radar transmitting array based on one-dimensional nested array is presented. On this basis, the receiving end is set as a nested array, and finally a virtual array and difference coarray are formed to expand the number of virtual array elements. The expansion increases the DOF of arrays while preserving the advantages of hybrid phased-MIMO radars. Simulation experiments show that compared with the traditional and coprime hybrid phased-MIMO radar, the proposed method can effectively improve the array DOF and Direction-of-Arrival (DOA) estimation accuracy.


Sign in / Sign up

Export Citation Format

Share Document