scholarly journals 2-D DOA Estimation Method Based on Coprime Array MIMO Radar

Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

Abstract Aiming at the problem that traditional Direction of Arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degree of freedom, a new method of 2-D DOA estimation based on coprime array MIMO Radar (SA-MIMO-CA). Frist of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. The array model uses a special irregular array as the transmitting array and a uniform linear array as the receiving array. Besides, in order to reduce complexity and improve the accuracy of two-dimensional DOA estimation, a new two-dimensional DOA estimation method based on sparse array is proposed. This method uses the sparse array topology of virtual array elements to analyze a larger number of information sources, and combines the compressed sensing method to process the sparse array, and obtains a larger array aperture with a smaller number of array elements, and improves the resolution of the azimuth angle. This method improves the DOA estimation accuracy and reduces the complexity. Finally, experiments verify the effectiveness and reliability of the SA-MIMO-CA method in improving the degree of freedom of the array, reducing the complexity, and improving the accuracy of the DOA.

Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

AbstractAiming at the problem that traditional direction of arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degrees of freedom (DOF), a new method for 2-D DOA estimation based on coprime array MIMO radar (SA-MIMO-CA) is proposed. First of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. This method is based on a new MIMO array-based co-prime array model (MIMO-CA), which improves the accuracy of multi-source estimation when the number of array elements is limited, and obtains a larger array aperture with a smaller number of array elements, and improves the estimation accuracy of 2-D DOA. Finally, the effectiveness and reliability of the proposed SM-MIMO-CA method in improving the DOF of array and DOA accuracy are verified by experiments.


Author(s):  
Fei Zhang ◽  
Chuantang Ji ◽  
Zijing Zhang ◽  
Dayu Yin ◽  
Yi Wang

AbstractAiming at the problems of low degree of freedom, small array aperture, and phase ambiguity in traditional coprime array direction-of-arrival estimation methods, a non-circular signal DOA estimation method based on expanded coprime array MIMO radar is proposed. Firstly, this method combines the coprime array and the MIMO radar to form transmitter and receiver array. Secondly, the array is expanded using the non-circular signal characteristics to reconstruct the received signal matrix. Then the dimensionality reduction is performed. The two-dimensional spectral peak search is converted into an optimization problem, and the optimization of the two-dimensional MUSIC algorithm is reconstructed using constraints, and a cost function is constructed to solve the problem. In addition, use the power series of the noise eigenvalues to correct the noise subspace to further improve the accuracy of the algorithm. Finally, the problem of no phase ambiguity in the method in this article is derived. Simulation experiments show that the method in this article can effectively avoid phase ambiguity, greatly improve the degree of freedom, and expand the array aperture. Compared with the traditional MUSIC algorithm and the mutual prime array MUSIC algorithm, it has better resolution and DOA estimation accuracy.


2021 ◽  
Author(s):  
Fei Zhang ◽  
Chuantang Ji ◽  
Zijing Zhang ◽  
Dayu Yin ◽  
Yi Wang

Abstract Aiming at the problems of low degree of freedom, small array aperture, phase ambiguity and other problems of traditional coprime array direction of arrival estimation methods, a non-circular signal DOA estimation method based on expanded coprime array MIMO radar is proposed. Firstly, this method combines the coprime array and the MIMO radar to form transmitter and receiver array. Secondly, the array is expanded using the non-circular signal characteristics to reconstruct the received signal matrix. Then the dimensionality reduction is performed. The two-dimensional spectral peak search is converted into an optimization problem, and the optimization of the two-dimensional MUSIC algorithm is reconstructed using constraints, and a cost function is constructed to solve the problem. In addition, using the power series of the noise eigenvalues to correct the noise subspace to further improve the accuracy of the algorithm. Finally, the problem of no phase ambiguity in the method in this article is derived. Simulation experiments show that the method in this article can effectively avoid phase ambiguity, greatly improve the degree of freedom, and expand the array aperture. Compared with the traditional MUSIC algorithm and the mutual prime array MUSIC algorithm, it has better resolution and DOA estimation accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yan-kui Zhang ◽  
Hai-yun Xu ◽  
Da-ming Wang ◽  
Bin Ba ◽  
Si-yao Li

The existing coprime array is mainly applicable to circular sources, while the virtual array degree of freedom (DOF) for noncircular sources is enhanced limitedly. In order to perfect the array DOF and the direction of arrival (DOA) estimation accuracy, a high degree of freedom sparse array design method for noncircular sources is put forward. Firstly, the method takes the advantages of the characteristic of the noncircular sources to expand the array manifold and then explores and solves the location distribution of the physical array sensors on the basis of the virtual array model with the help of the searching approach. The array configuration can obtain the longest continuous virtual array. The comparisons between the proposed array configuration and the common array configurations are advanced. The simulation experiments show that the sparse array presented in this paper can effectively increase the continuous virtual array aperture of noncircular sources, improve the array DOF and DOA estimation accuracy, and achieve the purpose of better estimation of multiple DOAs in underdetermined conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hao Li ◽  
Weijia Cui ◽  
Bin Ba ◽  
Haiyun Xu ◽  
Yankui Zhang

The performance of direction-of-arrival (DOA) estimation for sparse arrays applied to the distributed source is worse than that applied to the point source model. In this paper, we introduce the coprime array with a large array aperture into the DOA estimation algorithm of the exponential-type coherent distributed source. In particular, we focus on the fourth-order cumulant (FOC) of the received signal which can provide more useful information when the signal is non-Gaussian than when it is Gaussian. The proposed algorithm extends the array aperture by combining the sparsity of array space domain with the fourth-order cumulant characteristics of signals, which improves the estimation accuracy and degree of freedom (DOF). Firstly, the signal-received model of the sparse array is established, and the fourth-order cumulant matrix of the received signal of the sparse array is calculated based on the characteristics of distributed sources, which extend the array aperture. Then, the virtual array is constructed by the sum aggregate of physical array elements, and the position set of its maximum continuous part array element is obtained. Finally, the center DOA estimation of the distributed source is realized by the subspace method. The accuracy and DOF of the proposed algorithm are higher than those of the distributed signal parameter estimator (DSPE) algorithm and least-squares estimation signal parameters via rotational invariance techniques (LS-ESPRIT) algorithm when the array elements are the same. Complexity analysis and numerical simulations are provided to demonstrate the superiority of the proposed method.


2018 ◽  
Vol 232 ◽  
pp. 02052
Author(s):  
Tianhao Cheng ◽  
Buhong Wang ◽  
Qiaoge Liu ◽  
Jiwei Tian

In order to reduce the loss of Degree of Freedom (DOF) brought by the transmit subarray splitting of two-dimensional hybrid phased-MIMO radar, this paper presents a design method of transmitting and receiving array based on nested array structure. Firstly, a two-dimensional hybrid phased-MIMO radar transmitting array based on one-dimensional nested array is presented. On this basis, the receiving end is set as a nested array, and finally a virtual array and difference coarray are formed to expand the number of virtual array elements. The expansion increases the DOF of arrays while preserving the advantages of hybrid phased-MIMO radars. Simulation experiments show that compared with the traditional and coprime hybrid phased-MIMO radar, the proposed method can effectively improve the array DOF and Direction-of-Arrival (DOA) estimation accuracy.


2021 ◽  
Vol 2093 (1) ◽  
pp. 012029
Author(s):  
Shijie Yue ◽  
Guoping Hu ◽  
Chenghong Zhan ◽  
Yule Zhang ◽  
Mingming Zhu

Abstract Aiming at the problem of the small aperture of the traditional MIMO radar with virtual degrees of freedom, this paper designs a high degree of freedom space-limited MIMO radar. Both the transmitting and receiving elements of this radar adopt a sparse array structure. Array composition, the receiving array element is composed of a single array element and a uniform linear array. The number of virtual array elements can be realized by using array elements. Compared with the traditional sparse array MIMO radar with the same number of elements, the designed space-limited sparse array MIMO radar has a larger aperture. Experimental simulations verify the superiority of the space-limited MIMO radar angle estimation.


2021 ◽  
Vol 4 (2) ◽  
pp. 23-32
Author(s):  
Fatimah A. Salman ◽  
Bayan M. Sabbar

Sparse array such as the coprime array is one of the most preferable sparse arrays for direction of arrival estimation due to its properties, like simplicity, capability of resolving more sources than the number of elements and resistance to mutual coupling issue.  In this paper, a new coprime array model is proposed to increase the number of degree of freedom (DOF) and improve the performance of coprime array.   The new designed array can avoid the mutual coupling by minimizing the lag redundancy and expand the central lags in the virtual difference co-array. Thus, the propose structure can resolve more sources than the prototype coprime array using the same number of elements with improved direction of arrival estimation. Simulation results demonstrate that the proposed array model is more efficient than the others coprime array model.


Author(s):  
Na WANG ◽  
Xuanzhi ZHAO ◽  
Zengli LIU ◽  
Jingjing ZHANG

Coprime array isAsparse array composed of two uniform linear arrays with different spacing. When the two subarrays are inAnon-coherent distributed configuration, the direction of arrival (DOA) method based on the covariance analysis of the complete coprime array is no longer effective. According to the essential attribute that the distance between the elements of two subarrays can eliminate the angle ambiguity, based on the mathematical derivation, Aspatial spectral product DOA estimation method for incoherent distributed coprime arrays is proposed. Firstly, the spatial spectrum of each subarray is calculated by using the snapshot data of each subarray, and then the DOA estimation is realized by multiplying the spatial spectrum of each subarray. The simulation results show that the estimation accuracy and angle resolution of the present method are better than those of the traditional ambiguity resolution methods, and the estimation performance is good in the mutual coupling and low SNR environment, with the good adaptability and stability. Moreover, by using the flexibility of distributed array, the matching error is effectively solved through the rotation angle.


2022 ◽  
Author(s):  
Mengmeng Li

In this paper, we present a metasurface-based Direction of Arrival (DoA) estimation method that exploits the properties of space-time modulated reflecting metasurfaces to estimate in real-time the impinging angle of an illuminating monochromatic plane wave. The approach makes use of the amplitude unbalance of the received fields at broadside at the frequencies of the two first-order harmonics generated by the interaction between the incident plane wave and the modulated metasurface. Here, we first describe analytically how to generate the desired higher-order harmonics in the reflected spectrum and how to realize the breaking of the spatial symmetry of each order harmonic scattering pattern. Then, the one dimensional (1D) omnidirectional incident angle can be analytically computed using +1st and -1st order harmonics. The approach is also extended to 2D DoA estimation by using two orthogonally arranged 1D DoA modulation arrays. The accuracy of 1D DoA estimation is verified through full-wave numerical simulations. Compared to conventional DoA estimation methods, the proposed approach simplifies the computation and hardware complexity, ensuring at the same time estimation accuracy. The proposed method may have potential applications in wireless communications, target recognition, and identification.


Sign in / Sign up

Export Citation Format

Share Document