scholarly journals A Tale of Two Metrics: The EPA Risk Quotient Approach versus the Delay in Population Growth Index for Determination of Pesticide Risk to Aquatic Species

Author(s):  
John D. Stark ◽  
John E. Banks

Abstract The risk that two closely related insecticides, spinetoram and spinosad, posed to three Cladoceran species, Ceriodaphnia dubia, Daphnia pulex, and D. magna was determined using two approaches, the USEPA Risk Quotient method and the Delay in Population Growth Index (DPGI). Results of the RQ method showed that spinetoram posed a risk to all three species, but spinosad posed a risk only to C. dubia. The DPGI analysis showed that exposure to spinetoram resulted in populations of all three species being delayed > 3 generation times. Exposure to the LC50 and the lower 95% CL resulted in delayed populations while exposure to the upper 95% CL concentration of spinetoram resulted in no recovery of any of the three species over the course of the modeling exercise (88 d). Exposure to the lower and upper 95% Cl and the LC50 of spinosad resulted in C. dubia populations being delayed > 3 generations. D. pulex populations were not negatively affected after exposure to spinosad. D. magna populations were delayed > 3 generations, but only after exposure to the upper 95% Cl of spinosad. These results illustrate that although the EPA risk quotient method indicated that spinetoram posed a risk to all three species and that spinosad only posed a risk to C. dubia, the DPGI showed that D. magna would be negatively affected by spinosad and none of the three species would recover after exposure to the upper 95% CL of spinetoram. Because the DPGI uses the 95% Cl as well as the LC50 in its calculation and produces a measure of population growth and recovery or lack thereof, it provides more detailed information in terms of the potential risk of pesticides to populations than the RQ method.

1977 ◽  
Vol 37 (03) ◽  
pp. 535-540 ◽  
Author(s):  
D. S Pepper ◽  
D Banhegyi ◽  
Ann Howie

SummaryPrevious work from this department, concerned with testing the potential thrombogenicity of therapeutic factor IX concentrates, demonstrated that following recalcification of factor IX concentrates thrombin was generated within 3-30 minutes of incubation (Sas et al. 1975). The test developed (known as the TGt 50 test) is a two-stage assay and was thus found to be time consuming, tedious and tended to become inaccurate with long incubation periods and a large number of samples. A semiautomatic version of the test is reported in which the synthetic peptide Bz-ILE-GLU-GLY-ARG-pNA (S-2222) is added to recalcified, diluted factor IX concentrate in the micro-cuvette of a multiple sample recording spectrophotometer. Information can be obtained on (a) the amount of Xa (if any) present prior to recalcification (b) the initial amount of Xa formed and (c) the time taken to activate all factor X to Xa. Direct graphical interpretation shows a number of qualitative differences between commercial preparations, but by either of the criteria (b) or (c) above, it is possible to place the different products into “activated” and “non activated” groups such that both the Xa generation times and TGt 50 tests identify the same two groups of products. This agreement also indicates that the TGt 50 test is independent of the intrinsic factor V levels in the various concentrates.


1977 ◽  
Vol 16 (2) ◽  
pp. 220-222
Author(s):  
Zeba A. Sathar

The book covers a wide field, touching on almost all aspects of popula¬tion change on a world-wide scale. It discusses, using world and country data, the relationships between demographic and socio-economic variables, and elaborates on" their relative importance in the determination of population problems which confront the world as a whole and nations individually. Policies designed to alleviate these problems are discussed with an emphasis on those related to population control. The first chapter is entitled "Population Growth: Past and Prospective" and reviews the various parameters associated with population change in the past and in the future. It touches upon the concept of a stable population in order to show the elements which cause a population to change (i.e. remove it from its stable condition). The main elements of change, population growth, migration, mortality and natality are discussed individually. The chapter is concluded by a description of the main differences in these elements and other socio-economic conditions as they exist in the less-developed and developed countries.


2004 ◽  
Vol 55 (2) ◽  
pp. 193 ◽  
Author(s):  
Rodrigo Ramos-Jiliberto ◽  
Patricia Dauelsberg ◽  
Luis R. Zúñiga

In the present study, the sensitivity of four coexisting cladoceran species to ultraviolet (UV)-B radiation was evaluated. First, the LD50 under conditions inhibiting the action of photoenzymatic repair was calculated by exposing cladocerans to different doses of UV-B light only. Animals in another treatment group were exposed to both UV-B and visible light, which allows for photoenzymatic repair. Photoenzymatic repair contributed significantly towards the degree of total tolerance to UV-B light in all groups of cladocerans, although the magnitude of the contribution varied among species. When no photoenzymatic repair was allowed, the most tolerant species was Moina micrura, followed by Daphnia ambigua and Ceriodaphnia dubia, with Diaphanosoma chilense being the most sensitive species. Under conditions permitting the action of photorepair, M. micrura was again the most tolerant species to UV-B light. Ceriodaphnia dubia showed an intermediate tolerance value, whereas D. chilense and D. ambigua were the least tolerant species, with no significant differences between them. Adults and juveniles of C. dubia differed in their sensitivity to UV-B light under conditions with and without photorepair.


2020 ◽  
Vol 193 (3) ◽  
pp. 261-274
Author(s):  
Alfredo Pérez-Morales ◽  
S.S.S. Sarma ◽  
S. Nandini ◽  
Cristian Alberto Espinosa-Rodríguez ◽  
Ligia Rivera-De la Parra

Tropical waterbodies contain several species of toxic cyanobacteria including Microcystis, which adversely affect the somatic growth, survival and fecundity of zooplankton. Scenedesmus, one of the most common green algae, is even found in Microcystis -dominated waterbodies. It is, therefore possible that in natural ponds, rotifers and cladocerans feed on mixed phytoplankton species containing algae and cyanobacteria. In this work, we quantified demographic responses of three rotifer species (Brachionus calyciflorus, B. rubens, and Plationus patulus), and three cladoceran species (Simocephalus mixtus, Daphnia cf. mendotae and Moina macrocopa) fed toxic Microcystis aeruginosa only or mixed with Scenedesmus acutus. The highest population growth for both rotifer and cladoceran species was observed when Scenedesmus was offered alone or at 75 % of the diet. Daphnia cf. mendotae and B. rubens were less affected by Microcystis while M. macrocopa and B. calyciflorus were more adversely influenced, which was also corroborated by life table demography. In competition bioassays, D. cf. mendotae was more efficient, alone or in competition, when fed with 50 or 25 % of Microcystis. This work explains the dynamics of the zooplanktonic community against gradual changes in phytoplankton due to the presence of cyanobacteria.


2003 ◽  
Vol 86 (3) ◽  
pp. 510-514 ◽  
Author(s):  
Jeffery M van de Riet ◽  
Ross A Potter ◽  
Melissa Christie-Fougere ◽  
B Garth Burns

Abstract A liquid chromatographic (LC)/mass spectrometric (MS) method was developed for determining the residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in a number of aquatic species. The phenicols are extracted with acetone, the extracts are partitioned with dichloromethane, the aqueous layer is removed, and the organic layer is evaporated to dryness. The residue is dissolved in dilute acid and defatted with hexane, and the aqueous layer is prepared for analysis by LC. The phenicols are determined by reversed-phase LC by using a Hypersil C18-BD column with a water–acetonitrile gradient and MS detection using selectedion recording. Calibration curves were linear for all analytes between 0.015 and 0.425 ng injected. The relative standard deviations for measurements by the proposed method were <10% for all of the analytes studied, with re-coveries ranging from 71% for florfenicol amine to 107% for florfenicol in salmon tissue spiked at the 2 ng/g level. Detection limits of 0.1 ng/g for florfenicol and chloramphenicol, 0.3 ng/g for thiamphenicol, and 1.0 ng/g for florfenicol amine are easily obtainable. The operational errors, interferences, and recoveries for spiked samples compare favorably with those obtained by established LC methodology. The proposed method is simple, rapid, and specific for monitoring residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in a number of aquatic species.


2016 ◽  
Vol 113 (12) ◽  
pp. 3251-3256 ◽  
Author(s):  
Mikihiro Hashimoto ◽  
Takashi Nozoe ◽  
Hidenori Nakaoka ◽  
Reiko Okura ◽  
Sayo Akiyoshi ◽  
...  

Cellular populations in both nature and the laboratory are composed of phenotypically heterogeneous individuals that compete with each other resulting in complex population dynamics. Predicting population growth characteristics based on knowledge of heterogeneous single-cell dynamics remains challenging. By observing groups of cells for hundreds of generations at single-cell resolution, we reveal that growth noise causes clonal populations of Escherichia coli to double faster than the mean doubling time of their constituent single cells across a broad set of balanced-growth conditions. We show that the population-level growth rate gain as well as age structures of populations and of cell lineages in competition are predictable. Furthermore, we theoretically reveal that the growth rate gain can be linked with the relative entropy of lineage generation time distributions. Unexpectedly, we find an empirical linear relation between the means and the variances of generation times across conditions, which provides a general constraint on maximal growth rates. Together, these results demonstrate a fundamental benefit of noise for population growth, and identify a growth law that sets a “speed limit” for proliferation.


Sign in / Sign up

Export Citation Format

Share Document