scholarly journals Construction of a Prognostic Signature in Ewing’s Sarcoma: Based on RNA-binding Genes

Author(s):  
Bo Wu ◽  
Haoqun Xie ◽  
Wang Yibo ◽  
Guo Zhen ◽  
Hou Yuanyuan ◽  
...  

Abstract Background: Ewing’s sarcoma is the second most prevalent primary malignant bone neoplasm. RNA-binding proteins(RBPs) play a crucial role in post-transcriptional events. In tumor cells, the alterations of post-transcription enable cells to adapt to adjacent environment rapidly. Thus, the functions of RBPs in Ewing’s sarcoma can be of high value in the prognostic[1]. The underlying mechanism between Ewing’s sarcoma and RBPs remained unclear. Methods: Based on the GEO dataset, we investigated the global protein expression profile of Ewing's sarcoma patients. Differentially expressed proteins and survival-related RNA-binding protein related genes (RRGs) were evaluated by computational difference algorithm and COX regression analysis. In addition, we also explored the mutations in these RRGs. A new prognostic indicator based on RRGs was developed and tested afterwards using multivariate COX analysis.Results: The results showed that a total of 16 RRGs which closely associated with the overall survival in Ewing’s sarcoma patients using multivariate Cox regression analysis. The prognosis-related RRGs signature established using Cox regression model consists of 8 RRGs that can divide patients into high-risk and low-risk groups. Our results suggested that overall survival rate of high-risk group patients was shorter than the patients in low-risk group. According to multivariate Cox analysis, risk score index was an independent prognosis factor for Ewing’s sarcoma. In addition, the area under the curve of the corresponding receiver operating characteristic (ROC) curve of survival is 0.947.Conclusion: The 8 RRGs marker can predict the prognosis of Ewing’s sarcoma and thus help individualized treatment of patients at different risks.

2021 ◽  
Author(s):  
Bo Wu ◽  
Dong Zhu ◽  
Bo Yu ◽  
Yuanyuan Hou ◽  
Hongyu Wang ◽  
...  

Abstract Objective: By combining the expression profiles of metabolism-related genes (MRGS) with clinical information, the expression quantities of MRGS and the influence on development and prognosis were systematically analyzed, so as to provide a theoretical basis for the clinical study on the prognosis of Ewing's sarcoma.Methods: MRGs expression profiles of 64 patients with Ewing's sarcoma were obtained from the GEO dataset. Univariate Cox regression analysis was used to identify metabolization-related differentially expressed genes (DEGs) related with prognosis in Ewing's sarcoma patients. Then, multivariate Cox analysis was used to calculate novel prognostic markers based on metabolism-related DEGs. Finally, the new prognostic index was verified on the basis of the prognostic models.Results: Univariate Cox regression analysis identified 20 metabolization-related DEGs, 9 of which were significantly associated with Ewing's sarcoma patients' overall survival. Subsequently, we used nine metabolism-related DEGs to construct metabolism-related prognostic signature for patients with Ewing's sarcoma. Based on the 9 DEGs regression coefficient, we put forward the formula of each patient's risk score, and then divided the patients into high-risk group and low-risk group. The results indicated that the survival rate and survival time were higher in the low-risk group and lower in the high-risk group. Multivariate Cox analysis showed that risk score index was indeed an independent prognostic factor for Ewing's sarcoma. In addition, the area under the receiver operating characteristic (ROC) curve for overall survival was 0.985. And a nomogram model was established.Conclusion: The experimental results suggest that the 9 metabolism-related DEGs marker may be effective in predicting the prognosis of Ewing's sarcoma to some extent, helping to individualize treatment of patients at different risks.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haige Zheng ◽  
Huixian Liu ◽  
Yumin Lu ◽  
Hengguo Li

Background: Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous tumor with a high incidence and poor prognosis. Therefore, effective predictive models are needed to evaluate patient outcomes and optimize treatment.Methods: Robust Rank Aggregation (RRA) method was used to identify highly robust differentially-expressed genes (DEGs) between HNSCC and normal tissue in 9 GEO and TCGA datasets. Univariate Cox regression analysis and Lasso Cox regression analysis were performed to identify DEGs related to the Overall survival (OS) and to construct a prognostic gene signature (HNSCCSig). External validation was performed using GSE65858 dataset. Moreover, comprehensive bioinformatics analyses were used to identify the association between HNSCCSig and tumor immune environment.Results: A total of 257 reliable DEGs were identified by differentially analysis result of TCGA and GSE65858 datasets. The HNSCCSig including 7 mRNAs (SLURP1, SCARA5, CLDN10, MYH11, CXCL13, HLF, and ITGA3) were developed and validated to identify high-risk group who had a worse OS than low-risk group in TCGA and GSE65858 datasets. Cox regression analysis showed that the HNSCCSig could independently predict OS in both the TCGA and the GSE65858 datasets. Further research demonstrated that the infiltration bundance of CD8 + T cells, B cells, neutrophils, and NK cells were significantly lower in the high-risk group. A nomogram was also constructed by combining the HNSCCSig and clinical characters.Conclusion: We established and validated the HNSCCSig consisting of SLURP1, SCARA5, CLDN10, MYH11, CXCL13, HLF, and ITGA3. A nomogram combining HNSCCSig and some clinical parameters was constructed to identify high-risk HNSCC-patients with poor prognosis.


2020 ◽  
Author(s):  
Ye Liu ◽  
Zhixiang Qin ◽  
Hai Yang ◽  
Yang Gu ◽  
Kun Li

Abstract Background Hepatocellular carcinoma (HCC) represents one of the deadliest malignancies worldwide. Despite significant advances in diagnosis and treatment, the mortality rate from HCC persists at a substantial level. This research strives to establish a prognostic model based on the RNA binding proteins (RBPs) that can predict HCC patients’ OS. Methods There was an RNA-seq data set derived from the Cancer Genome Atlas (TCGA) databank which was included in our research as well as a Microarray data set (GSE14520). The differentially expressed RBPs between HCC and normal tissues were investigated in TCGA dataset. Subsequently, the TCGA data set was randomly split into a training and a testing cohort. The prognostic model of the training cohort was developed by applying univariate Cox regression and lasso Cox regression analyses and multivariate Cox regression analysis. In order to evaluate the prognostic value of the model, a comprehensive survival assessment was conducted. Results A total of 133 differentially expressed RBPs were identified. Five RBPs (RPL10L, EZH2, PPARGC1A, ZNF239, IFIT1) were used to construct the model. The model accurately predicted the prognosis of liver cancer patients in both the TCGA cohort and the GSE14520 validation cohort. HCC patients could be assigned into a high-risk group and a low-risk group by this model, and the overall survival of these two groups was significantly different. Furthermore, the risk scores obtained by our model were highly correlated with immune cell infiltration. . Conclusions Five RBPs-related prognostic models were constructed and validated to predict OS reliably in HCC individuals. It helps to identify patients at high risk of mortality with the risk prediction score, which optimizes personalized therapeutic decision-making.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Author(s):  
Sijia Li ◽  
Hongyang Zhang ◽  
Wei Li

Abstract Background: The purpose of our study is establishing a model based on ferroptosis-related genes predicting the prognosis of patients with head and neck squamous cell carcinoma (HNSCC).Methods: In our study, transcriptome and clinical data of HNSCC patients were from The Cancer Genome Atlas, ferroptosis-related genes and pathways were from Ferroptosis Signatures Database. Differentially expressed genes (DEGs) were screened by comparing tumor and adjacent normal tissues. Functional enrichment analysis of DEGs, protein-protein interaction network and gene mutation examination were applied. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression were used to identified DEGs. The model was constructed by multivariate Cox regression analysis and verified by Kaplan-Meier analysis. The relationship between risk scores and other clinical features was also analyzed. Univariate and multivariate Cox analysis was used to verified the independence of our model. The model was evaluated by receiver operating characteristic analysis and calculation of the area under the curve (AUC). A nomogram model based on risk score, age, gender and TNM stages was constructed.Results: We analyzed data including 500 tumor tissues and 44 adjacent normal tissues and 259 ferroptosis-related genes, then obtained 73 DEGs. Univariate Cox regression analysis screened out 16 genes related to overall survival, and LASSO analysis fingered out 12 of them with prognostic value. A risk score model based on these 12 genes was constructed by multivariate Cox regression analysis. According to the median risk score, patients were divided into high-risk group and low-risk group. The survival rate of high-risk group was significantly lower than that of low-risk group in Kaplan-Meier curve. Risk scores were related to T and grade. Univariate and multivariate Cox analysis showed our model was an independent prognostic factor. The AUC was 0.669. The nomogram showed high accuracy predicting the prognosis of HNSCC patients.Conclusion: Our model based on 12 ferroptosis-related genes performed excellently in predicting the prognosis of HNSCC patients. Ferroptosis-related genes may be promising biomarkers for HNSCC treatment and prognosis.


2021 ◽  
Author(s):  
Jianyu Zhao ◽  
Bo Liu ◽  
Xiaoping Li

Abstract Background: Adrenocortical carcinoma (ACC) is a rare endocrine cancer that manifests as abdominal masses and excessive steroid hormone levels. Transcription factors (TFs) deregulation is found to be involved in adrenocortical tumorigenesis and cancer progression. This study aimed to construct a TF-based prognostic signature for prediction of survival of ACC patients.Methods: The gene expression profile for ACC patients were downloaded from TCGA and GEO datasets. The univariate Cox analysis was applied to identify survival-related TFs and the LASSO Cox regression was conducted to construct the TF signature. The multivariate analysis was used to reveal the independent prognostic factors.Results: We identified a 13-TF prognostic signature comprised of CREB3L3, NR0B1, CENPA, FOXM1, E2F2, MYBL2, HOXC11, ZIC2, ZNF282, DNMT1, TCF3, ELK4, and KLF6 using the univariate Cox analysis and LASSO Cox regression. The risk score based on the TF-signature could classify patients into low- and high-risk group. Kaplan-Meier analyses showed that patients in the high-risk group had significantly shorter overall survival compared to the low-risk patients. ROC curves showed that the prognostic signature predicted the overall survival of ACC patients with good sensitivity and specificity. Furthermore, the TF-risk score was an independent prognostic factor.Conclusion: Taken together, we identified a 13-TF prognostic marker to predict overall survival in ACC patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Li ◽  
Dongcen Ge ◽  
Shu-lan Sun

Abstract Background Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. This study aims to investigate the potential correlation between ferroptosis and the prognosis of lung adenocarcinoma (LUAD). Methods RNA-seq data were collected from the LUAD dataset of The Cancer Genome Atlas (TCGA) database. Based on ferroptosis-related genes, differentially expressed genes (DEGs) between LUAD and paracancerous specimens were identified. The univariate Cox regression analysis was performed to screen key genes associated with the prognosis of LUAD. LUAD patients were divided into the training set and validation set. Then, we screened out key genes and built a prognostic prediction model involving 5 genes using the least absolute shrinkage and selection operator (LASSO) regression with tenfold cross-validation and the multivariate Cox regression analysis. After dividing LUAD patients based on the median level of risk score as cut-off value, the generated prognostic prediction model was validated in the validation set. Moreover, we analyzed the somatic mutations, and estimated the scores of immune infiltration in the high-risk and low-risk groups. Functional enrichment analysis of DEGs was performed as well. Results High-risk scores indicated the worse prognosis of LUAD. The maximum area under curve (AUC) of the training set and the validation set in this study was 0.7 and 0.69, respectively. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of LUAD cases with the survival time of 1, 3 and 5 years was 0.698, 0.71 and 0.73, respectively. In addition, the mutation frequency of LUAD patients in the high-risk group was significantly higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results. Conclusions This study constructs a novel LUAD prognosis prediction model involving 5 ferroptosis-related genes, which can be used as a promising tool for decision-making of clinical therapeutic strategies of LUAD.


2021 ◽  
Author(s):  
Fei Li ◽  
Dongcen Ge ◽  
Shu-lan Sun

Abstract Background. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. The aim of this study is to investigate the relationship between ferroptosis and the prognosis of lung adenocarcinoma (LUAD).Methods. RNA-seq data was collected from the LUAD dataset of The Cancer Genome Altas (TCGA) database. We used ferroptosis-related genes as the basis, and identify the differential expression genes (DEGs) between cancer and paracancer. The univariate Cox regression analysis were used to screen the prognostic-related genes. We divided the patients into training and validation sets. Then, we screened out key genes and built a 5 genes prognostic prediction model by the applications of the least absolute shrinkage and selection operator (LASSO) 10-fold cross-validation and the multi-variate Cox regression analysis. We divided the cases by the median value of risk score and validated this model in the validation set. Meanwhile, we analyzed the somatic mutations, and estimated the score of immune infiltration in the high- and low-risk groups, as well as performed functional enrichment analysis of DEGs.Results. The result revealed that the high-risk score triggered the worse prognosis. The maximum area under curve (AUC) of the training set and the validation set of in this study was 0.7 and 0.69. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of cases with survival time of 1, 3 and 5 years are 0.698, 0.71 and 0.73. In addition, the mutation frequency of patients in the high-risk group was higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results.Conclusion. This study constructed a novel LUAD prognosis prediction model base on 5 ferroptosis-related genes, which can provide a prognostic evaluation tool for the clinical therapeutic decision.


2021 ◽  
Author(s):  
BO SONG ◽  
Lijun Tian ◽  
Fan Zhang ◽  
Zheyu Lin ◽  
Boshen Gong ◽  
...  

Abstract Background: Thyroid cancer (TC) is the most common endocrine malignancy worldwide. The incidence of TC is high and increasing worldwide due to continuous improvements in diagnostic technology. TC is still often overtreated due to a lack of reliable diagnostic biomarkers. Therefore, determining accurate prognostic predictions to stratify TC patients is important.Methods: Raw data were downloaded from the TCGA database, and pairwise comparisons were applied to identify differentially expressed immune-related lncRNA (DEirlncRNA) pairs. Then, we used univariate Cox regression analysis and a modified Lasso algorithm on these pairs to construct a risk assessment model for TC. Next, TC patients were assigned to high- and low-risk groups based on the optimal cutoff score of the model for the 1-year ROC curve. We evaluated the signature in terms of prognostic independence, predictive value, immune cell infiltration, ICI-related molecules and small-molecule inhibitor efficacy. Results: We identified 30 DEirlncRNA pairs through Lasso regression, and 14 pairs served as the novel predictive signature. The high-risk group had a significantly poorer prognosis than the low-risk group. Cox regression analysis revealed that this immune-related signature can predict prognosis independently and reliably for TC. With the CIBERSORT algorithm, we found an association between the signature and immune cell infiltration. Additionally, several immune checkpoint inhibitor (ICI)-related molecules, such as PD-1 and PD-L1, showed a negative correlation with the high-risk group. We further found that some commonly used small-molecule inhibitors, such as sunitinib, were related to this new signature. Conclusions: We constructed a prognostic immune-related lncRNA signature that can predict TC patient survival without considering the technical bias of different platforms, and this signature also sheds light on TC overall prognosis and novel clinical treatments, such as ICB therapy and small molecular inhibitors.


Sign in / Sign up

Export Citation Format

Share Document