immune cell infiltration
Recently Published Documents


TOTAL DOCUMENTS

812
(FIVE YEARS 594)

H-INDEX

39
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhixiao Xu ◽  
Chengshui Chen

Background: Interstitial lung disease in systemic sclerosis (SSc-ILD) is one of the most severe complications of systemic sclerosis (SSc) and is the main cause of mortality. In this study, we aimed to explore the key genes in SSc-ILD and analyze the relationship between key genes and immune cell infiltration as well as the key genes relevant to the hallmarks of cancer.Methods: Weighted gene co-expression network analysis (WGCNA) algorithm was implemented to explore hub genes in SSc-ILD samples from the Gene Expression Omnibus (GEO) database. Logistic regression analysis was performed to screen and verify the key gene related to SSc-ILD. CIBERSORT algorithms were utilized to analyze immune cell infiltration. Moreover, the correlation between the key genes and genes relevant to cancer was also evaluated. Furthermore, non-coding RNAs (ncRNAs) linking to PTGS2 were also explored.Results: In this study, we first performed WGCNA analysis for three GEO databases to find the potential hub genes in SSc-ILD. Subsequently, we determined PTGS2 was the key gene in SSC-ILD. Furthermore, in CIBERSORT analyses, PTGS2 were tightly correlated with immune cells such as regulatory T cells (Tregs) and was negatively correlated with CD20 expression. Moreover, PTGS2 was associated with tumor growth. Then, MALAT1, NEAT1, NORAD, XIST identified might be the most potential upstream lncRNAs, and LIMS1 and RANBP2 might be the two most potential upstream circRNAs.Conclusion: Collectively, our findings elucidated that ncRNAs-mediated downregulation of PTGS2, as a key gene in SSc-ILD, was positively related to the occurrence of SSc-ILD and abnormal immunocyte infiltration. It could be a promising factor for SSc-ILD progression to malignancy.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hui Zhang ◽  
Xu Zhang ◽  
Weiguo Xu ◽  
Jian Wang

Background: The oncological role of TMC5 in human cancers has only been revealed partially. We performed integrated bioinformatics analysis to provide a thorough and detailed insight of associations between TMC5 and tumorigenesis, cancer progression, and prognosis.Methods: With reference to the accessible online databases, the TMC5 expressions in tumor tissues and corresponding normal tissues, different pathological stages, and various cancer cells were analyzed, while the protein levels of TMC5 in different cancers were also inspected. Meanwhile, the prognostic value of TMC5 expression in multiple cancers as well as in advanced-stage patients was investigated. Furthermore, the mutational data of TMC5 and its correlation with cancer prognosis were assessed. Moreover, the association between the TMC5 level and immune cell infiltration was evaluated. Next, TMC5-related pathway alterations and drug responses were summarized. Finally, the TMC5 based protein network was generated, and relevant enrichment was performed.Results: In our study, the expression level of TMC5 was significantly higher in the tumor tissue than that of the normal tissues in most cancer types. Fluctuations of TMC5 levels were also observed among different pathological stages. In the meantime, the protein level elevated in the tumor tissue in the cancers enrolled. Moreover, the expression of TMC5 was not only prognostic for overall survival (OS) or recurrence free survival (RFS) in various types of cancers but also correlated to OS in patients with more advanced cancers. Additionally, the mutational status of TMC5 is also associated with prognosis in cancer patients. It is worth noting that the TMC5 level was closely related to immune cell infiltrations, especially in ESCA, TGCT, and USC. The TMC5 expression was also identified as an activator for pathways including PI3K/AKT, RAS/MAPK, and TSC/mTOR, proved to be associated with multiple drug responses and assessed to be interactive with the TMEM family.Conclusion: TMC5 might function as a potential marker for cancer survival and immune responses.


2022 ◽  
Vol 2022 ◽  
pp. 1-30
Author(s):  
Cancan Luo ◽  
Han Nie ◽  
Li Yu

Diffuse large B-cell lymphoma (DLBCL) is a complex invasive tumour that occurs mainly among the elderly. Therefore, we analysed the relationship between ageing-related genes (AG) and DLBCL prognosis. Datasets related to DLBCL and human AGs were downloaded and screened from the Gene Expression Omnibus (GEO) database and HAGR website, respectively. LASSO and Cox regression were used to analyse AGs in the dataset and construct an AG predictive model related to DLBCL prognosis. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment were used to analyse the function of the AG predictive model. The immune microenvironment and immune cell infiltration in DLBCL and their relationship with the AG prediction model were also analysed. After the analysis, 118 AGs were identified as genes related to DLBCL prognosis. Using the LASSO and Cox regression analyses, 9 AGs (PLAU, IL7R, MYC, S100B, IGFBP3, NR3C1, PTK2, TBP, and CLOCK) were used to construct an AG prognostic model. In the training and verification sets, this model exhibited excellent predictive ability for the prognosis of patients with DLBCL who have different clinical characteristics. Further analysis revealed that the high- and low-risk groups of the AG prognostic model were significantly correlated with immune cell infiltration and tumour microenvironment in DLBCL. Functional enrichment analysis also showed that the genes in the AG model were associated with immune-related functions and pathways. In conclusion, we constructed an AG model with a strong predictive function in DLBCL, with the ability to predict the prognosis of patients with different clinical features. This model provides new ideas and potential therapeutic targets for the study of the pathogenesis of DLBCL.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Ping Liu ◽  
Ruoxu Chen ◽  
Xudong Zhang ◽  
Ruiting Fu ◽  
Lin Tao ◽  
...  

Abstract Background High-grade serous ovarian carcinoma is highly heterogeneous, and although many studies have been conducted to identify high-grade serous ovarian carcinoma molecular subtypes that are sensitive to immunotherapy, no precise molecular subtype has been proposed to date. Immune cell infiltration and immune checkpoints are highly correlated with immunotherapy. Here, we investigated immune cell infiltration and immune checkpoint values for prognosis and precise immunotherapy for high-grade serous ovarian carcinoma based on molecular subtype classification. Results “High antigen-presenting cells infiltration molecular subtype of high-grade serous ovarian carcinoma” was identified in immune cell infiltration profiles. Each of the three immune cell infiltration clusters (A, B, and C) demonstrated distinct immune cell characterization, with immune cell infiltration cluster C exhibiting high antigen-presenting cell infiltration, improved prognosis, and higher sensitivity to immunotherapy. Programmed death-1/programmed death ligand 1 has a prognostic and predictive role that can help classify molecular subtypes. Conclusions Our findings redefined a unique molecular subtype of high-grade serous ovarian carcinoma, suggesting that high-grade serous ovarian carcinoma patients with higher antigen-presenting cell infiltration and programmed death-1/programmed death ligand 1 expression can benefit from precise immunotherapy.


2022 ◽  
Author(s):  
Wei Zhang ◽  
Yue Qian ◽  
Xue Jin ◽  
Yixian Wang ◽  
Lili Mu

Abstract Background: SIRT7 has been shown to be expressed in many cancer types, including kidney renal clear cell carcinoma (KIRC), but its functional role in this oncogenic context remains to be firmly defined. This study was designed to explore correlations between SIRT7 and KIRC characteristics using the TCGA database. Methods: Relationships between SIRT7 expression and KIRC patient clinicopathological characteristics were assessed through Kruskal-Wallis tests, Wilcoxon signed-rank tests, and logistic regression analyses. Area under the ROC curve (AUC) values were used to assess the prognostic value of SIRT7 as a means of classifying KIRC patients. The functional role of SIRT7 in this cancer type was assessed through GO/KEGG enrichment analyses and immune cell infiltration analyses. Results: In KIRC patients, higher levels of SIRT7 expression were associated with Race, M stage, T stage (all P < 0.05). SIRT7 offered significant diagnostic value in ROC curve analyses (AUC = 0.912), and elevated SIRT7 levels were linked to worse patient overall survival (OS; P < 0.001). The expression of SIRT7 was independently related with KIRC patient OS (HR: 1.827; 95%CI: 1.346-2.481; P<0.001). In GO/KEGG analyses, SIRT7 was found to be associated with ubiquitin-mediated proteolysis and nucleotide excision repair. Higher SIRT7 expression was related to the enhanced infiltration of certain immune cells.Conclusions: Increased SIRT7 expression was associated with a worse KIRC patient prognosis, and immune infiltrates, suggesting it may offer value as a prognostic biomarker for this cancer type.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Riem Gawish ◽  
Philipp Starkl ◽  
Lisabeth Pimenov ◽  
Anastasiya Hladik ◽  
Karin Lakovits ◽  
...  

In silico modelling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. MaVie16 induced profound pathology in BALB/c and C57BL/6 mice and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNg and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo.


2022 ◽  
Author(s):  
Yang Bu ◽  
Kejun Liu ◽  
Yiming Niu ◽  
Ji Hao ◽  
Lei Cui ◽  
...  

Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in the metabolic and immunological aspects of tumors. In hepatocellular carcinoma (HCC), the alteration of tumor microenvironment influences recurrence and metastasis. We extracted G6PD-related data from public databases of HCC tissues and used a bioinformatics approach to explore the correlation between G6PD expression and clinicopathological features and prognosis of immune cell infiltration in HCC.Methods: We extract G6PD expression information from TCGA and GEO databases in liver cancer tissues and normal tissues, validated by immunohistochemistry, and the correlation between G6PD expression and clinical features is analyzed, and the clinical significance of G6PD in liver cancer is assessed by Kaplan-Meier, Cox regression and prognostic line graph models. Functional enrichment analysis is performed by protein-protein interaction (PPI) network, GO/KEGG, GSEA and G6PD-associated differentially expressed genes (DEGs). TIMER and ssGSEA packages are used to assess the correlation between expression and the level of immune cell infiltration.Results: Our results show that G6PD expression is significantly upregulated in hepatocellular carcinoma tissues (P < 0.001). G6PD expression is associated with histological grade, pathological stage, T-stage, vascular infiltration and AFP level (P < 0.05); HCC patients in the low G6PD expression group had longer overall survival and better prognosis compared with the high G6PD expression group (P < 0.05). The level of G6PD expression also affects the levels of macrophages, unactivated dendritic cells, B cells, and follicular helper T cells in the tumor microenvironment.Conclusion: High expression of G6PD is a potential biomarker for poor prognosis of hepatocellular carcinoma, and G6PD may be a target for immunotherapy of HCC.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Thinh T. Nguyen ◽  
Hyun-Sung Lee ◽  
Bryan M. Burt ◽  
Jia Wu ◽  
Jianjun Zhang ◽  
...  

Abstract Background Lung adenocarcinoma, the most common type of lung cancer, has a high level of morphologic heterogeneity and is composed of tumor cells of multiple histological subtypes. It has been reported that immune cell infiltration significantly impacts clinical outcomes of patients with lung adenocarcinoma. However, it is unclear whether histologic subtyping can reflect the tumor immune microenvironment, and whether histologic subtyping can be applied for therapeutic stratification of the current standard of care. Methods We inferred immune cell infiltration levels using a histological subtype-specific gene expression dataset. From differential gene expression analysis between different histological subtypes, we developed two gene signatures to computationally determine the relative abundance of lepidic and solid components (denoted as the L-score and S-score, respectively) in lung adenocarcinoma samples. These signatures enabled us to investigate the relationship between histological composition and clinical outcomes in lung adenocarcinoma using previously published datasets. Results We found dramatic immunological differences among histological subtypes. Differential gene expression analysis showed that the lepidic and solid subtypes could be differentiated based on their gene expression patterns while the other subtypes shared similar gene expression patterns. Our results indicated that higher L-scores were associated with prolonged survival, and higher S-scores were associated with shortened survival. L-scores and S-scores were also correlated with global genomic features such as tumor mutation burdens and driver genomic events. Interestingly, we observed significantly decreased L-scores and increased S-scores in lung adenocarcinoma samples with EGFR gene amplification but not in samples with EGFR gene mutations. In lung cancer cell lines, we observed significant correlations between L-scores and cell sensitivity to a number of targeted drugs including EGFR inhibitors. Moreover, lung cancer patients with higher L-scores were more likely to benefit from immune checkpoint blockade therapy. Conclusions Our findings provided further insights into evaluating histology composition in lung adenocarcinoma. The established signatures reflected that lepidic and solid subtypes in lung adenocarcinoma would be associated with prognosis, genomic features, and responses to targeted therapy and immunotherapy. The signatures therefore suggested potential clinical translation in predicting patient survival and treatment responses. In addition, our framework can be applied to other types of cancer with heterogeneous histological subtypes.


Sign in / Sign up

Export Citation Format

Share Document