scholarly journals Diversification of leech proboscis structure according to prey ingestion behavior

2020 ◽  
Author(s):  
Hee-Jin Kwak ◽  
Jung-Hyeuk Kim ◽  
Joo-Young Kim ◽  
Donggu Jeon ◽  
Doo-Hyung Lee ◽  
...  

Abstract Background Adaptive radiation is a phenomenon in which various organs are diversified morphologically or functionally as animals adapt to environmental inputs such as diet and circumstance. Although previous studies have addressed changes caused by various external pressures, the evidence for variation in invertebrates is not well known. Leeches comprise a carnivorous or ectoparasitic group of animals that feed on a wide range of prey. They exhibit a corresponding variety of ingestion behaviors and morphological diversity of mouthparts and gut specializations. However, research on the diversity of ingestion behaviors and the internal structure of feeding organs in leeches is little known. In this study, we use histological analyses, fluorescent labeling and immunohistochemistry to reveal the detailed proboscis structure in the family Glossiphoniidae, while also suggesting the diversification of proboscises.Results We identified the feeding behavior of rhynchobdellid leeches, which have the proboscises. Alboglossiphonia sp. swallows prey whole using its proboscis, whereas other leeches exhibit typical fluid-sucking behavior. Glossiphoniid leeches exhibit fluid ingestion behavior along with clear arrangement of longitudinal muscles, circular muscles surrounding the lumen, and radial muscles, while Alboglossiphonia sp., which displays macrophagous ingestion like salifid Barbronia sp., has a partial circular muscle distribution and spacious lumen that extends to longitudinal muscle layer. To address whether the different feeding behaviors are intrinsic, we investigated the behavioral patterns and muscle arrangements in the earlier developmental stage of glossiphoniid leeches. Juvenile Glossiphoniidae including the Alboglossiphonia sp. exhibit the fluid ingestion behavior and have the proboscis with the compartmentalized muscle layers.Conclusions Genetic, morphological and behavioral differences between juvenile and adult stages of Alboglossiphonia sp. suggest their adult feeding biology has diverged from ancestral glossiphoniid leeches, while retaining developmental vestiges of the typical juvenile feeding morphology currently observed across Glossiphoniidae. This study provides the characteristics of leeches with specific ingestion behaviors, and a comparison of structural differences that serves as the first evidence of the proboscis diversification.

2017 ◽  
Vol 05 (03) ◽  
pp. E146-E150 ◽  
Author(s):  
David Rahni ◽  
Takashi Toyonaga ◽  
Yoshiko Ohara ◽  
Francesco Lombardo ◽  
Shinichi Baba ◽  
...  

Background and study aims A 54-year-old man was diagnosed with a rectal tumor extending through the submucosal layer. The patient refused surgery and therefore endoscopic submucosal dissection (ESD) was pursued. The lesion exhibited the muscle retraction sign. After dissecting circumferentially around the fibrotic area by double tunneling method, a myotomy was performed through the internal circular muscle layer, creating a plane of dissection between the internal circular muscle layer and the external longitudinal muscle layer, and a myectomy was completed.The pathologic specimen verified T1b grade 1 sprouting adenocarcinoma with 4350 µm invasion into the submucosa with negative resection margins.


1998 ◽  
Vol 76 (10-11) ◽  
pp. 989-999 ◽  
Author(s):  
Michal Ceregrzyn ◽  
Tsuyoshi Ozaki ◽  
Atsukazu Kuwahara ◽  
Maria Wiechetek

The effects of sodium nitrite (0.1, 1, 10 mM) on mechanical activity of isolated rat stomach fundus muscle and the influence of guanylate cyclase activity inhibitor (methylene blue) and channel inhibitors (tetrodotoxin, charybdotoxin, apamin) were studied. Nitrite evoked dose-dependent relaxation in the longitudinal and circular muscle layers. The lowest effective concentration of sodium nitrite was 0.1 mM, which is comparable with the NOAEL (no observed adverse effect level). Tetrodotoxin (1 µM) markedly inhibited electrically induced contraction and rebound relaxation, but did not influence the nitrite-induced relaxation. Charybdotoxin (100 nM) decreased the relaxation evoked by 10 mM nitrite to 52.3 and 65.7% of control reaction in the circular and longitudinal muscle layer, respectively. Apamin (100 nM) did not influence the nitrite-induced relaxation. Methylene blue (10 µM) decreased relaxation induced by nitrite in the longitudinal and circular muscle layer, respectively, to 66.7 and 54.3% of the response to 1 mM nitrite alone. Relaxation induced by nitrite was decreased in the presence of L-cysteine (5 mM), and in the circular and longitudinal muscle layer reached 29.6 and 23.1%, respectively, of the response to 1 mM nitrite alone. We conclude that the relaxing effect of nitrite on gastric fundus results from its direct action on smooth muscle cells and probably the enteric nervous system is not involved in this action. The nitrite-elicited relaxation depends on activation of guanylate cyclase and high conductance Ca2+-activated potassium channels; however, activation of potassium channels might be a part of or might act in parallel with the mechanism involving the cyclic GMP system. Effects of nitrite observed in the presence of L-cysteine suggest that nitrosothiols are not responsible for nitrite-evoked activation of guanylate cyclase.Key words: nitrite, gastric motility, tetrodotoxin, methylene blue, charybdotoxin, L-cysteine.


1960 ◽  
Vol 7 (4) ◽  
pp. 717-724 ◽  
Author(s):  
Kiyoshi Hama

The fine structure of the main dorsal and ventral circulatory trunks and of the subneural vessels and capillaries of the ventral nerve cord of the earthworm, Eisenia foetida, has been studied with the electron microscope. All of these vessels are lined internally by a continuous extracellular basement membrane varying in thickness (0.03 to 1 µ) with the vessel involved. The dorsal, ventral, and subneural vessels display inside this membrane scattered flattened macrophagic or leucocytic cells called amebocytes. These lie against the inner lining of the basement membrane, covering only a small fraction of its surface. They have long, attenuated branching cell processes. All of these vessels are lined with a continuous layer of unfenestrated endothelial cells displaying myofilaments and hence qualifying for the designation of "myoendothelial cells." The degree of muscular specialization varies over a spectrum, however, ranging from a delicate endowment of thin myofilaments in the capillary myoendothelial cells to highly specialized myoendothelial cells in the main pulsating dorsal blood trunk, which serves as the worm's "heart" or propulsive "aorta." The myoendothelial cells most specialized for contraction display well organized sarcoplasmic reticulum and myofibrils with thick and thin myofilaments resembling those of the earthworm body wall musculature. In the ventral circulatory trunk, circular and longitudinal myofilaments are found in each myoendothelial cell. In the dorsal trunk, the lining myoendothelial cells contain longitudinal myofilaments. Outside these cells are circular muscle cells. The lateral parts of the dorsal vessels have an additional outer longitudinal muscle layer. The blood plasma inside all of the vessels shows scattered particles representing the circulating earthworm blood pigment, erythrocruorin.


1990 ◽  
Vol 258 (3) ◽  
pp. G344-G351 ◽  
Author(s):  
A. Tottrup ◽  
A. Forman ◽  
P. Funch-Jensen ◽  
U. Raundahl ◽  
K. E. Andersson

Smooth muscle strips representing longitudinal and circular muscle layers of the esophagogastric junction (EGJ) and esophageal body (EB) of the human esophagus were prepared. The strips were mounted in organ baths and isometric tension was recorded. Square wave stimulation was applied through platinum electrodes. Only responses abolished by tetrodotoxin (TTX) were considered neurogenic. Strips taken from longitudinal muscle layers of the EB and EGJ contracted during field stimulation. The responses evoked were abolished by atropine, and optimal frequency of stimulation was 40 Hz. In strips taken from the circular muscle layer of the EB, a contraction occurred after cessation of the stimulus. Atropine inhibited 90% of this response; the optimal stimulation frequency was 40 Hz. When a tone was induced in strips from this layer, a TTX-sensitive relaxation was seen during field stimulation. During stimulation of strips from the EGJ circular muscle layer, which was the only preparation developing spontaneous active tone, a relaxation was seen. A small contraction followed after termination of the stimulus. The relaxation, which was nonadrenergic, noncholinergic, reached maximum at 10 Hz. Atropine inhibited 40% of the contraction. The results suggest that in the longitudinal muscle layer of the human lower esophagus field stimulation causes postganglionic nerves to release transmitter(s) acting on muscarinic receptors. The responses of circular muscle layers seem to be mediated through release of at least two transmitters.


2000 ◽  
Vol 48 (3) ◽  
pp. 333-343 ◽  
Author(s):  
Christophe Porcher ◽  
Yvon Julé ◽  
Monique Henry

Enkephalins are involved in neural control of digestive functions such as motility, secretion, and absorption. To better understand their role in pigs, we analyzed the qualitative and quantitative distribution of enkephalin immunoreactivity (ENK-IR) in components of the intestinal wall from the esophagus to the anal sphincter. Immunohistochemical labelings were analyzed using conventional fluorescence and confocal microscopy. ENK-IR was compared with the synaptophysin immunoreactivity (SYN-IR). The results show that maximal ENK-IR levels in the entire digestive tract are reached in the myenteric plexuses and, to a lesser extent, in the external submucous plexus and the circular muscle layer. In the longitudinal muscle layer, ENK-IR was present in the esophagus, stomach, rectum, and anal sphincter, whereas it was absent from the duodenum to the distal colon. In the ENK-IR plexuses and muscle layers, more than 60% of the nerve fibers identified by SYN-IR expressed ENK-IR. No ENK-IR was observed in the internal submucous plexus and the mucosa; the latter was found to contain ENK-IR endocrine cells. These results strongly suggest that, in pigs, enkephalins play a major role in the regulatory mechanisms that underlie the neural control of digestive motility.


1980 ◽  
Vol 86 (1) ◽  
pp. 237-248
Author(s):  
ALLEN MANGEL ◽  
C. LADD PROSSER

The intact stomach of the toad initiates rhythmic slow-spikes of 5–15 s duration and frequency of 3-5 min−1. The spontaneous electrical waves originate in the longitudinal muscle layer; isolated circular muscle is quiescent. Aboral conduction velocity is 0.12–0.9 mm s−1. Reduction of external sodium concentration from 89.5 to 15 mM produced no effect on slow spikes, although further reduction to 1.5 mM increased frequency and decreased amplitude. Slow-spikes were unaffected by ouabain or by incubation in potassium-free solution. When calcium in the medium was reduced, slow-spike amplitude and frequency decreased. Slow-spikes exhibited a change in amplitude of 16 mV per decade change in CaO2+; slow-spikes were eliminated at 10−8 M CaO2+ and by blockers of calcium conductance channels. Intact intestine of toad demonstrated slow-waves which resembled those of mammalian intestine. These were sensitive to changes in external sodium and were eliminated by 1 × 10−4M ouabain. It is suggested that rhythmic slow-spikes of longitudinal smooth muscle of amphibian stomach may result from periodic changes in Ca conductance whereas endogenous electrical waves of intestine may result from rhythmic extrusion of sodium.


2020 ◽  
Author(s):  
Hanchuan Peng ◽  
Peng Xie ◽  
Lijuan Liu ◽  
Xiuli Kuang ◽  
Yimin Wang ◽  
...  

Abstract Ever since the seminal findings of Ramon y Cajal, dendritic and axonal morphology has been recognized as a defining feature of neuronal types. Yet our knowledge concerning the diversity of neuronal morphologies, in particular distal axonal projection patterns, is extremely limited. To systematically obtain single neuron full morphology on a brain-wide scale, we established a platform with five major components: sparse labeling, whole-brain imaging, reconstruction, registration, and classification. We achieved sparse, robust and consistent fluorescent labeling of a wide range of neuronal types by combining transgenic or viral Cre delivery with novel transgenic reporter lines. We acquired high-resolution whole-brain fluorescent images from a large set of sparsely labeled brains using fluorescence micro-optical sectioning tomography (fMOST). We developed a set of software tools for efficient large-volume image data processing, registration to the Allen Mouse Brain Common Coordinate Framework (CCF), and computer-assisted morphological reconstruction. We reconstructed and analyzed the complete morphologies of 1,708 neurons from the striatum, thalamus, cortex and claustrum. Finally, we classified these cells into multiple morphological and projection types and identified a set of region-specific organizational rules of long-range axonal projections at the single cell level. Specifically, different neuron types from different regions follow highly distinct rules in convergent or divergent projection, feedforward or feedback axon termination patterns, and between-cell homogeneity or heterogeneity. Major molecularly defined classes or types of neurons have correspondingly distinct morphological and projection patterns, however, we also identify further remarkably extensive morphological and projection diversity at more fine-grained levels within the major types that cannot presently be accounted for by preexisting transcriptomic subtypes. These insights reinforce the importance of full morphological characterization of brain cell types and suggest a plethora of ways different cell types and individual neurons may contribute to the function of their respective circuits.


2019 ◽  
Author(s):  
Hanchuan Peng ◽  
Peng Xie ◽  
Lijuan Liu ◽  
Xiuli Kuang ◽  
Yimin Wang ◽  
...  

ABSTRACTEver since the seminal findings of Ramon y Cajal, dendritic and axonal morphology has been recognized as a defining feature of neuronal types. Yet our knowledge concerning the diversity of neuronal morphologies, in particular distal axonal projection patterns, is extremely limited. To systematically obtain single neuron full morphology on a brain-wide scale, we established a platform with five major components: sparse labeling, whole-brain imaging, reconstruction, registration, and classification. We achieved sparse, robust and consistent fluorescent labeling of a wide range of neuronal types by combining transgenic or viral Cre delivery with novel transgenic reporter lines. We acquired high-resolution whole-brain fluorescent images from a large set of sparsely labeled brains using fluorescence micro-optical sectioning tomography (fMOST). We developed a set of software tools for efficient large-volume image data processing, registration to the Allen Mouse Brain Common Coordinate Framework (CCF), and computer-assisted morphological reconstruction. We reconstructed and analyzed the complete morphologies of 1,708 neurons from the striatum, thalamus, cortex and claustrum. Finally, we classified these cells into multiple morphological and projection types and identified a set of region-specific organizational rules of long-range axonal projections at the single cell level. Specifically, different neuron types from different regions follow highly distinct rules in convergent or divergent projection, feedforward or feedback axon termination patterns, and between-cell homogeneity or heterogeneity. Major molecularly defined classes or types of neurons have correspondingly distinct morphological and projection patterns, however, we also identify further remarkably extensive morphological and projection diversity at more fine-grained levels within the major types that cannot presently be accounted for by preexisting transcriptomic subtypes. These insights reinforce the importance of full morphological characterization of brain cell types and suggest a plethora of ways different cell types and individual neurons may contribute to the function of their respective circuits.


1975 ◽  
Vol 228 (6) ◽  
pp. 1887-1892 ◽  
Author(s):  
J Melville ◽  
E Macagno ◽  
J Christensen

The hypothesis examined was that contractions of the longitudinal muscle layer occurin the duodenum which are independent of those of the circular muscle layer and that they induce flow of duodenal contents. A segment of opossum duodenum isolated in vitro was marked and photographed during periods of longitudinal muscle contraction, when the circular muscle layer appeared inactive. The prequency of longitudinal oscillation of the marked points was 20.5 cycles/min. The longitudinal displacement wave spread caudad with an average velocity of 3.27 cm/s. Frequency and velocity of electrical slow waves were determined in similiar duodenal segments. Slow-wave frquencywas 18.9 cycles/min. In a two-dimensional mechanical model, flow induced by simulatedlongitudinal muscle layer appear to be driven by the electrical slow waves of the duodenum. They are capable of inducing a pattern of flow in which ocntents flow betweenthe core and the periphery of the intestinal conduit.


2016 ◽  
Vol 10 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Kumpei Honjo ◽  
Kazumasa Kure ◽  
Ryosuke Ichikawa ◽  
Hisashi Ro ◽  
Rina Takahashi ◽  
...  

Generally, lesions of rectal neuroendocrine tumors (NETs) 10 mm or smaller are less malignant and are indicated for endoscopic therapy. However, the vertical margin may remain positive after conventional endoscopic mucosal resection (EMR) because NETs develop in a way similar to submucosal tumors (SMTs). The usefulness of EMR with a ligation device, which is modified EMR, and endoscopic submucosal dissection (ESD) was reported, but no standard treatment has been established. We encountered 2 patients in whom rectal NETs were completely resected by combined dissection and resection of the circular muscle layer using the ESD technique. Case 1 was an 8-mm NET of the lower rectum. Case 2 was NET of the lower rectum treated with additional resection for a positive vertical margin after EMR. In both cases, the circular muscle layer was dissected applying the conventional ESD technique, followed by en bloc resection while conserving the longitudinal muscle layer. No problems occurred in the postoperative course in either case. Rectal NETs are observed in the lower rectum in many cases, and it is less likely that intestinal perforation by endoscopic therapy causes peritonitis. The method employed in these cases, namely combined dissection and resection of the circular muscle layer using the ESD technique, can be performed relatively safely, and it is possible to ensure negativity of the vertical margin. In addition, it may also be useful for additional treatment of cases with a positive vertical margin after EMR.


Sign in / Sign up

Export Citation Format

Share Document