scholarly journals Microbiological findings in early and late implant loss: an observational clinical case-controlled study

2021 ◽  
Author(s):  
Michael Korsch ◽  
Silke-Mareike Marten ◽  
Dominic Stoll ◽  
Christopher Prechtl ◽  
Andreas Dötsch

Abstract Background Implants are a predictable and well-established treatment method in dentistry. Nevertheless, looking at possible failures of dental implants, early and late loss have to be distinguished. The intent of the study was to report microbiological findings on the surface of implants with severe peri-implantitis, which had to be explanted. Methods 53 specimens of implants from 48 patients without severe general illnesses have been examined. The groups investigated were implants that had to be removed in the period of osseointegration (early loss, 13 patients with 14 implants) or after the healing period (late loss, 14 patients with 17 implants). The implant losses were compared with two control groups (implants with no bone loss directly after completed osseointegration, two to four months after implant placement (17 patients with 17 implants) and implants with no bone loss and prosthetic restoration for more than three years (5 patients with 5 implants)). Data about the bacteria located in the peri-implant sulcus was collected using amplification and high throughput sequencing of the 16S rRNA gene. Results The biofilm composition differed substantially between individuals. Both in early and late implant loss of Fusobacterium nucleatum , and Porphyromonas gingivalis were found to be abundant . Late lost implants showed higher bacterial diversity and in addition higher abundances of Treponema, Fretibacterium, Pseudoramibacter and Desulfobulbus , while microbial communities of early loss implants were very heterogeneous and showed no significantly more abundant bacterial taxa. Conclusions Specific peri-implant pathogens were found around implants that were lost after a primarily uneventful osseointegration. P. gingivalis and F. nulceatum frequently colonized the implant in early and late losses and could therefore be characteristic for implant loss in general. In general, early lost implants showed also lower microbial diversity than late losses. However, the microbial results were not indicative of the causes of early and late losses.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael Korsch ◽  
Silke-Mareike Marten ◽  
Dominic Stoll ◽  
Christopher Prechtl ◽  
Andreas Dötsch

Abstract Background Implants are a predictable and well-established treatment method in dentistry. Nevertheless, looking at possible failures of dental implants, early and late loss have to be distinguished. The intent of the study was to report microbiological findings on the surface of implants with severe peri-implantitis, which had to be explanted. Methods 53 specimens of implants from 48 patients without severe general illnesses have been examined. The groups investigated were implants that had to be removed in the period of osseointegration (early loss, 13 patients with 14 implants) or after the healing period (late loss, 14 patients with 17 implants). The implant losses were compared with two control groups (implants with no bone loss directly after completed osseointegration, two to four months after implant placement (17 patients with 17 implants) and implants with no bone loss and prosthetic restoration for more than three years (5 patients with 5 implants)). Data about the bacteria located in the peri-implant sulcus was collected using amplification and high throughput sequencing of the 16S rRNA gene. Results The biofilm composition differed substantially between individuals. Both in early and late implant loss, Fusobacterium nucleatum and Porphyromonas gingivalis were found to be abundant. Late lost implants showed higher bacterial diversity and in addition higher abundances of Treponema, Fretibacterium, Pseudoramibacter and Desulfobulbus, while microbial communities of early loss implants were very heterogeneous and showed no significantly more abundant bacterial taxa. Conclusions Specific peri-implant pathogens were found around implants that were lost after a primarily uneventful osseointegration. P. gingivalis and F. nucleatum frequently colonized the implant in early and late losses and could therefore be characteristic for implant loss in general. In general, early lost implants showed also lower microbial diversity than late losses. However, the microbial results were not indicative of the causes of early and late losses.


2020 ◽  
Author(s):  
Michael Korsch ◽  
Christopher Prechtl ◽  
Silke-Mareike Marten ◽  
Dominic Stoll ◽  
Andreas Dötsch

Abstract BackgroundImplants are a predictable and well-established treatment method in dentistry. Nevertheless, early and late loss must be distinguished when examining possible failures of dental implants. The aim of the study was to report microbiological findings on the surface of implants with severe peri-implantitis, which had to be explanted.MethodsFifty-three specimens of implants from 48 patients without severe general illnesses were examined. The groups investigated were implants that had to be removed in the period of osseointegration (early loss, 13 patients with 14 implants) or after the healing period (late loss, 14 patients with 17 implants). Implant losses were compared with two control groups (implants with no bone loss directly after complete osseointegration, two to four months after implant placement (17 patients with 17 implants) and implants with no bone loss and prosthetic restoration for more than three years (5 patients with 5 implants)). Data for the bacteria located in the peri-implant sulcus were collected using amplification and high-throughput sequencing of the 16S rRNA gene.ResultsThe biofilm composition differed substantially between individuals. In both early and late implant loss, Fusobacterium nucleatum and Porphyromonas gingivalis were found to be abundant. Late-loss implants showed higher bacterial diversity and higher abundances of Treponema, Fretibacterium, Pseudoramibacter and Desulfobulbus, while microbial communities of early-loss implants were very heterogeneous and showed no significantly more abundant bacterial taxa.ConclusionsSpecific peri-implant pathogens were found around implants that were lost after a primarily uneventful osseointegration. P. gingivalis and F. nucleatum frequently colonized the implant in early and late losses and may therefore be a general characteristic of implant loss. The reasons for early losses seem to be multifactorial, with bacterial infection being one potential risk factor, while peri-implant infections are known to be a major risk among other aspects, such as overload or mechanical complications.


2020 ◽  
Author(s):  
Michael Korsch ◽  
Silke-Mareike Marten ◽  
Dominic Stoll ◽  
Christopher Prechtl ◽  
Andreas Dötsch

Abstract Background Implants are a predictable and well-established treatment method in dentistry. Nevertheless, looking at possible failures of dental implants, early and late loss have to be distinguished. This study aimed at microbiological aspects on surfaces of implants, which had to be removed.Methods 53 specimens of implants from 49 healthy patients have been examined. The groups investigated were implants that had to be removed in the period of osseointegration (early loss) or after the healing period (late loss). Data about the microbiological colonialization of the implant was collected using amplification and high throughput sequencing of the 16S rRNA gene.Results Both early and late implant loss was associated with increased levels of Fusobacterium nucleatum and Porphyromonas gingivalis. Additionally. Late lost implants showed higher bacterial diversity and in addition higher abundances of Treponema denticola and Tannerella forsythia, while microbial communities of early loss implants were very heterogeneous.Conclusions Pathogens commonly associated with severe periodontitis were found around implants that were lost after a primarily uneventful osseointegration. P. gingivalis and F. nucleatum colonized the implant surface in early and late loss and could therefore be characteristic for implant loss in general. The reasons for early losses could be multifactorial. Trial registration This study was approved by the ethical review committee of the local medical association (Institutional Review Board of the Saarland Medical Council, Germany; ID: 232/12).


2022 ◽  
Vol 10 (1) ◽  
pp. 105
Author(s):  
Jaime Romero ◽  
Osmán Díaz ◽  
Claudio D. Miranda ◽  
Rodrigo Rojas

Chile has promoted the diversification of aquaculture and red cusk-eel (Genypterus chilensis) is one of the prioritized species. However, many aspects of the biology of the species are unknown or have little information available. These include intestinal microbiota, an element that may play an important role in the nutrition and defense of cultured animals for meat production. This study compares the microbiota composition of the intestinal contents of wild and aquaculture fish to explore the microbial communities present and their potential contribution to the host. DNA was extracted from the intestinal content samples and the V4 region of the 16S rRNA gene was amplified and sequenced using the Ion Torrent platform. After the examination of the sequences, strong differences were found in the composition at the level of phylum, being Firmicutes and Tenericutes the most abundant in aquaculture and wild condition, respectively. At the genus level, the Vagococcus (54%) and Mycoplasma (97%) were the most prevalent in the microbial community of aquaculture and wild condition, respectively. The evaluation of predicted metabolic pathways in these metagenomes showed that in wild condition there is an important presence of lipid metabolism belonging to the unsaturated fatty acid synthesis. In the aquaculture condition, the metabolism of terpenoids and polyketides were relevant. To our knowledge, this is the first study to characterize and compare the intestinal microbiota of red cusk-eel (Genypterus chilensis) of wild and aquaculture origin using high-throughput sequencing.


2020 ◽  
Vol 8 (12) ◽  
pp. 1967
Author(s):  
Tamara N. Nazina ◽  
Salimat K. Bidzhieva ◽  
Denis S. Grouzdev ◽  
Diyana S. Sokolova ◽  
Tatyana P. Tourova ◽  
...  

A methanogenic enrichment growing on a medium with methanol was obtained from a petroleum reservoir (Republic of Azerbaijan) and stored for 33 years without transfers to fresh medium. High-throughput sequencing of the V4 region of the 16S rRNA gene revealed members of the genera Desulfovibrio, Soehngenia, Thermovirga, Petrimonas, Methanosarcina, and Methanomethylovorans. A novel gram-positive, rod-shaped, anaerobic fermentative bacterium, strain 1933PT, was isolated from this enrichment and characterized. The strain grew at 13–55 °C (optimum 35 °C), with 0–3.0% (w/v) NaCl (optimum 0–2.0%) and in the pH range of 6.7–8.0 (optimum pH 7.0). The 16S rRNA gene sequence similarity, the average nucleotide identity (ANI) and in silico DNA–DNA hybridization (dDDH) values between strain 1933PT and the type strain of the most closely related species Soehngenia saccharolytica DSM 12858T were 98.5%, 70.5%, and 22.6%, respectively, and were below the threshold accepted for species demarcation. Genome-based phylogenomic analysis and physiological and biochemical characterization of the strain 1933PT (VKM B-3382T = KCTC 15984T) confirmed its affiliation to a novel species of the genus Soehngenia, for which the name Soehngenia longivitae sp. nov. is proposed. Genome analysis suggests that the new strain has potential in the degradation of proteinaceous components.


2020 ◽  
Vol 12 (9) ◽  
pp. 3624 ◽  
Author(s):  
Tatyana Tourova ◽  
Diyana Sokolova ◽  
Tamara Nazina ◽  
Denis Grouzdev ◽  
Eugeni Kurshev ◽  
...  

The contamination of marine and freshwater ecosystems with the items from thermoplastics, including polystyrene (PS), necessitates the search for efficient microbial degraders of these polymers. In the present study, the composition of prokaryotes in biofilms formed on PS samples incubated in seawater and the industrial water of a petrochemical plant were investigated. Using a high-throughput sequencing of the V3–V4 region of the 16S rRNA gene, the predominance of Alphaproteobacteria (Blastomonas), Bacteroidetes (Chryseolinea), and Gammaproteobacteria (Arenimonas and Pseudomonas) in the biofilms on PS samples exposed to industrial water was revealed. Alphaproteobacteria (Erythrobacter) predominated on seawater-incubated PS samples. The local degradation of the PS samples was confirmed by scanning microscopy. The PS-colonizing microbial communities in industrial water differed significantly from the PS communities in seawater. Both communities have a high potential ability to carry out the carbohydrates and amino acids metabolism, but the potential for xenobiotic degradation, including styrene degradation, was relatively higher in the biofilms in industrial water. Bacteria of the genera Erythrobacter, Maribacter, and Mycobacterium were potential styrene-degraders in seawater, and Pseudomonas and Arenimonas in industrial water. Our results suggest that marine and industrial waters contain microbial populations potentially capable of degrading PS, and these populations may be used for the isolation of efficient PS degraders.


PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41484 ◽  
Author(s):  
Marcio C. Costa ◽  
Luis G. Arroyo ◽  
Emma Allen-Vercoe ◽  
Henry R. Stämpfli ◽  
Peter T. Kim ◽  
...  

2018 ◽  
Vol 81 (5) ◽  
pp. 848-859
Author(s):  
MIYO NAKANO

ABSTRACT High-throughput sequencing of the 16S rRNA gene enhances understanding of microbial diversity from complex environmental samples. The 16S rRNA gene is currently the most important target in bacterial evolution and ecology studies, particularly for determination of phylogenetic relationships among taxa, exploration of bacterial diversity in a given environment, and quantification of the relative abundance of taxa at various levels. However, some parts of the conserved region of the bacterial 16S rRNA gene are similar to the conserved regions of plant chloroplasts and eukaryotic mitochondria. Therefore, if DNA contains a large amount of nontarget DNA, this nontarget DNA can be coamplified and consequently produce useless sequence reads. We experimentally assessed the primer pair 335f/769r and the widely used bacterial primer pair SD (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21). The primer pair 335f/769r was examined for its ability to amplify bacterial DNA in plant and animal feed samples by using the single-strand confirmation polymorphism method. In our present study, these primer pairs were validated for microbial community structure analysis with complex food matrices by using next-generation sequencing. The sequencing results revealed that the primer pair 335f/769r successfully resulted in fewer chloroplast and mitochondrial sequence reads than generated by the universal primer pair SD and therefore is comparatively suitable for metagenomic analyses of complex food matrices, particularly those that are rich in plant DNA. Additionally, some taxonomic groups were missed entirely when only the SD primer pair was used.


Sign in / Sign up

Export Citation Format

Share Document