16S rRNA Gene Primer Validation for Bacterial Diversity Analysis of Vegetable Products

2018 ◽  
Vol 81 (5) ◽  
pp. 848-859
Author(s):  
MIYO NAKANO

ABSTRACT High-throughput sequencing of the 16S rRNA gene enhances understanding of microbial diversity from complex environmental samples. The 16S rRNA gene is currently the most important target in bacterial evolution and ecology studies, particularly for determination of phylogenetic relationships among taxa, exploration of bacterial diversity in a given environment, and quantification of the relative abundance of taxa at various levels. However, some parts of the conserved region of the bacterial 16S rRNA gene are similar to the conserved regions of plant chloroplasts and eukaryotic mitochondria. Therefore, if DNA contains a large amount of nontarget DNA, this nontarget DNA can be coamplified and consequently produce useless sequence reads. We experimentally assessed the primer pair 335f/769r and the widely used bacterial primer pair SD (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21). The primer pair 335f/769r was examined for its ability to amplify bacterial DNA in plant and animal feed samples by using the single-strand confirmation polymorphism method. In our present study, these primer pairs were validated for microbial community structure analysis with complex food matrices by using next-generation sequencing. The sequencing results revealed that the primer pair 335f/769r successfully resulted in fewer chloroplast and mitochondrial sequence reads than generated by the universal primer pair SD and therefore is comparatively suitable for metagenomic analyses of complex food matrices, particularly those that are rich in plant DNA. Additionally, some taxonomic groups were missed entirely when only the SD primer pair was used.

2020 ◽  
Vol 8 (12) ◽  
pp. 1967
Author(s):  
Tamara N. Nazina ◽  
Salimat K. Bidzhieva ◽  
Denis S. Grouzdev ◽  
Diyana S. Sokolova ◽  
Tatyana P. Tourova ◽  
...  

A methanogenic enrichment growing on a medium with methanol was obtained from a petroleum reservoir (Republic of Azerbaijan) and stored for 33 years without transfers to fresh medium. High-throughput sequencing of the V4 region of the 16S rRNA gene revealed members of the genera Desulfovibrio, Soehngenia, Thermovirga, Petrimonas, Methanosarcina, and Methanomethylovorans. A novel gram-positive, rod-shaped, anaerobic fermentative bacterium, strain 1933PT, was isolated from this enrichment and characterized. The strain grew at 13–55 °C (optimum 35 °C), with 0–3.0% (w/v) NaCl (optimum 0–2.0%) and in the pH range of 6.7–8.0 (optimum pH 7.0). The 16S rRNA gene sequence similarity, the average nucleotide identity (ANI) and in silico DNA–DNA hybridization (dDDH) values between strain 1933PT and the type strain of the most closely related species Soehngenia saccharolytica DSM 12858T were 98.5%, 70.5%, and 22.6%, respectively, and were below the threshold accepted for species demarcation. Genome-based phylogenomic analysis and physiological and biochemical characterization of the strain 1933PT (VKM B-3382T = KCTC 15984T) confirmed its affiliation to a novel species of the genus Soehngenia, for which the name Soehngenia longivitae sp. nov. is proposed. Genome analysis suggests that the new strain has potential in the degradation of proteinaceous components.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Wilbert Serrano ◽  
Raul M. Olaechea ◽  
Luis Cerpa ◽  
Jose Herrera ◽  
Aldo Indacochea

ABSTRACT Hydrothermal vent activity is often associated with submarine volcanism. Here, we investigated the presence of microorganisms related to hydrothermal activity in the Orca seamount. Data profiling of the 16S rRNA gene amplicon sequences revealed a diversity pattern dominated mainly by the phyla Proteobacteria, Acidobacteria, Planctomycetes, and Bacteroidetes.


2012 ◽  
Vol 23 (4) ◽  
pp. 409-416 ◽  
Author(s):  
Juliana Vianna Pereira ◽  
Luciana Leomil ◽  
Fabíola Rodrigues-Albuquerque ◽  
José Odair Pereira ◽  
Spartaco Astolfi-Filho

The objective of the present study was to evaluate the bacterial diversity in the saliva of patients with different oral hygiene indexes using of two 16S rRNA gene libraries. Each library was composed of samples from patients with different averages of the differentiated Silness-Löe biofilm index: the first library (A) with an index between 1.0 and 3.0 (considered a high index) and the second library (B) between 0 and 0.5 (considered a low index). Saliva DNA was extracted and the 16S rRNA gene was amplified and cloned. The obtained sequences were compared with those stored at NCBI and RDP GenBank. The saliva of patients with high index presented five known genera - Streptococcus, Granulicatella, Gemella, Veillonella and Peptostreptococcus - and 33.3% of nonculturable bacteria grouped into 23 operational taxonomic units (OTUs). The saliva of patients with low index differed significantly from the first library (p=0.000) and was composed of 42 OTUs distributed into 11 known genera - Streptococcus, Granulicatella, Gemella, Veillonella, Oribacterium, Haemophilus, Escherichia, Neisseria, Prevotella, Capnocytophaga, Actinomyces - including 24.87% of nonculturable bacteria. It was possible to conclude that there is greater bacterial diversity in the saliva of patients with low dental plaque in relation to patients with high dental plaque.


PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41484 ◽  
Author(s):  
Marcio C. Costa ◽  
Luis G. Arroyo ◽  
Emma Allen-Vercoe ◽  
Henry R. Stämpfli ◽  
Peter T. Kim ◽  
...  

2017 ◽  
Vol 68 ◽  
pp. 129-136 ◽  
Author(s):  
Karina Edith Motato ◽  
Christian Milani ◽  
Marco Ventura ◽  
Francia Elena Valencia ◽  
Patricia Ruas-Madiedo ◽  
...  

2014 ◽  
Vol 68 (5) ◽  
pp. 657-662 ◽  
Author(s):  
Xinfeng Liu ◽  
Hanlu Fan ◽  
Xiangbin Ding ◽  
Zhongshan Hong ◽  
Yongwei Nei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document