First measurement of decimeter-sized rocky material in the Oort cloud

Author(s):  
Denis Vida ◽  
Peter Brown ◽  
Hadrien Devillepoix ◽  
Paul Wiegert ◽  
Danielle Moser ◽  
...  

Abstract The Oort cloud is thought to be a reservoir of icy planetesimals and a source of long-period comets (LPCs) implanted from the outer Solar System during the time of giant planet formation. The presence of rocky ice-free bodies is much harder to explain. The rocky fraction in the Oort cloud is a key diagnostic of Solar System formation models as this ratio can distinguish between "massive" and "depleted" proto-asteroid belt scenarios and thus disentangle competing planet formation models. Objects of asteroidal appearance have been telescopically observed on LPC orbits, but from reflectance spectra alone it is uncertain whether they are asteroids or extinct comets. Here we report a first direct observation of a decimeter-sized rocky meteoroid on a retrograde LPC orbit (e ≈ 1.0, i = 121°). The ~2 kg object entered the atmosphere at 62 km/s. The associated fireball terminated at 46.5 km, 40 km deeper than cometary objects of similar mass and speed. During its flight, it experienced dynamic pressures of several MPa, comparable to meteorite-dropping fireballs. In contrast, cometary material measured by Rosetta have compressive strengths of ~1 kPa. The earliest fragmentation of this fireball occurred at >100 kPa, indicating it had a minimum global strength well in excess of cometary. A numerical ablation model produces bulk density and ablation properties consistent with asteroidal meteoroids. We estimate the flux of rocky objects impacting Earth from the Oort cloud to be ~0.7 × 106 km2 per year to a mass limit of 10 g. This is ~6% of the total flux of fireballs on LPC-orbits to these masses. Our results suggests there is a high fraction of asteroidal material in the Oort cloud at small sizes and gives support to migration-based dynamical models of the formation of the Solar System which predict that significant rocky material is implanted in the Oort cloud, a result not explained by traditional Solar System formation models.

1992 ◽  
Vol 9 ◽  
pp. 347-354 ◽  
Author(s):  
A.Chantal Levasseur-Regourd

AbstractNew and important data have been obtained during the 1985-1986 return of comet Halley, including in situ observations of the nucleus and the coma. Since the interpretation of the observations is not straightforward, the results are presented in a rather conservative manner. Some clues to the solar system formation are suggested, e.g. the shape of the nucleus, its low density, the estimated mass of the Oort cloud, the elemental abundances in comet Halley. Constraints related to isotopie abundances (deuterium enrichment, possible anomalies in carbon isotopes) and to cometary dust (complex organic compounds, submicron sized dust particles) are extensively discussed.


2009 ◽  
Vol 5 (S263) ◽  
pp. 57-66 ◽  
Author(s):  
Marc Fouchard

AbstractThe Oort cloud, which corresponds to the furthest boundary of our Solar System, is considered as the main reservoir of long period comets. This cloud is likely a residual of the Solar System formation due to the gravitational effects of the young planets on the remaining planetesimals. Given that the cloud extends to large distances from the Sun (several times 10 000 AU), the bodies in this region have their trajectories affected by the Galactic environment of the Solar System. This environment is responsible for the re-injection of the Oort cloud comets into the planetary region of the Solar System. Such comets, also called “new comets”, are the best candidates to become Halley type or “old” long period comets under the influence of the planetary gravitational attractions. Consequently, the flux of new comets represents the first stage of the long trip from the Oort cloud to the observable populations of comets. This is why so many studies are still devoted to this flux.The different perturbers related to the Galactic environment of the Solar System, which have to be taken into account to explain the flux are reviewed. Special attention will be paid to the gravitational effects of stars passing close to the Sun and to the Galactic tides resulting from the difference of the gravitational attraction of the Galaxy on the Sun and on a comet. The synergy which takes place between these two perturbers is also described.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 427-430
Author(s):  
Kevin J. Walsh

AbstractBuilding models capable of successfully matching the Terrestrial Planet's basic orbital and physical properties has proven difficult. Meanwhile, improved estimates of the nature of water-rich material accreted by the Earth, along with the timing of its delivery, have added even more constraints for models to match. While the outer Asteroid Belt seemingly provides a source for water-rich planetesimals, models that delivered enough of them to the still-forming Terrestrial Planets typically failed on other basic constraints - such as the mass of Mars.Recent models of Terrestrial Planet Formation have explored how the gas-driven migration of the Giant Planets can solve long-standing issues with the Earth/Mars size ratio. This model is forced to reproduce the orbital and taxonomic distribution of bodies in the Asteroid Belt from a much wider range of semimajor axis than previously considered. In doing so, it also provides a mechanism to feed planetesimals from between and beyond the Giant Planet formation region to the still-forming Terrestrial Planets.


2005 ◽  
Vol 13 ◽  
pp. 891-893
Author(s):  
Thierry Fouchet

AbstractIn this brief summary, I present recent progress on our knowledge of the Giant Planets and Titan atmospheric composition, as well as the impact of this progress on our understanding of Solar System formation, and atmospheric chemistry.


Author(s):  
Thierry Montmerle ◽  
Jean-Charles Augereau ◽  
Marc Chaussidon ◽  
Matthieu Gounelle ◽  
Bernard Marty ◽  
...  

2020 ◽  
Vol 497 (1) ◽  
pp. L46-L49 ◽  
Author(s):  
A Morbidelli ◽  
K Batygin ◽  
R Brasser ◽  
S N Raymond

ABSTRACT In two recent papers published in MNRAS, Namouni and Morais claimed evidence for the interstellar origin of some small Solar system bodies, including: (i) objects in retrograde co-orbital motion with the giant planets and (ii) the highly inclined Centaurs. Here, we discuss the flaws of those papers that invalidate the authors’ conclusions. Numerical simulations backwards in time are not representative of the past evolution of real bodies. Instead, these simulations are only useful as a means to quantify the short dynamical lifetime of the considered bodies and the fast decay of their population. In light of this fast decay, if the observed bodies were the survivors of populations of objects captured from interstellar space in the early Solar system, these populations should have been implausibly large (e.g. about 10 times the current main asteroid belt population for the retrograde co-orbital of Jupiter). More likely, the observed objects are just transient members of a population that is maintained in quasi-steady state by a continuous flux of objects from some parent reservoir in the distant Solar system. We identify in the Halley-type comets and the Oort cloud the most likely sources of retrograde co-orbitals and highly inclined Centaurs.


Sign in / Sign up

Export Citation Format

Share Document