scholarly journals Tidal Calibration of Multicomponent Borehole Strainmeters and Validation of the Method Using Surface Waves

Author(s):  
Norio Matsumoto ◽  
Osamu Kamigaichi

Abstract We conducted in-situ calibration of fifteen multicomponent borehole strainmeters deployed in and around the expected focal zones of the Nankai megathrust earthquake. The in-situ calibration method compares tidal strain observed by the borehole strainmeters with predicted tidal strains from the solid Earth’s tide and oceanic tidal loading. Then we obtained a calibration matrix to transfer observed strain data to the regional strain field. We estimated the oceanic tidal loading accurately using a Green’s function, which takes the depth of deployment into consideration. We calculated four sets of calibration matrices using combinations of any three of a group of four gauges as well as a calibration matrix using all four gauges. The estimated calibration matrix was validated by comparing observed seismic strain waves after applying the calibration matrix with theoretical seismic strain waves excited by the 2010 Chile earthquake (Mw 8.8). The in-situ calibration was found to be appropriate for all eleven Ishii-type borehole strainmeters and for one of the four Gladwin Tensor Strainmeters (GTSMs). It was also effective with respect to two shear strains for two of the other three GTSMs.

Author(s):  
Nicholas Vlajic ◽  
Michael Jonson ◽  
Manton Guers

Abstract Dynamometers are used to measure integrated fluid dynamic loads such as thrust, torque or side forces. To resolve all of three force and three moment components, multiple embedded force gages are often used. Due to arrangement, static loads, and redundancy, the number of sensor channels can exceed the six degrees of freedom needed to resolve the generalized rigid body forces. This paper considers modeling of the force gages as simple springs to develop an elastic model of the dynamometer. The method was applied to a dynamometer consisting of six three-component force gages arranged in an axisymmetric ring. A calibration matrix based on the elastic model with individual force gage sensitivities was shown to match a full calibration matrix where properly summed force gage voltages were obtained under global load application. The elastic model was then extended to consider calibration matrices where sensors were assumed to fail. In this scenario, several virtual loads were applied to the dynamometer and the calibration matrix was obtained by minimizing the least square error. It was found that nearly half of the sensors could be lost and still a virtual calibration could be applied to the measurements. Extending the least square idea, an actual in-situ calibration matrix was formed by striking the dynamometer with a diverse set of instrumented hammer strikes. This calibration matrix also agreed with the other calibrations at frequencies below where system dynamics become important.


Metrologia ◽  
2013 ◽  
Vol 50 (5) ◽  
pp. 509-517 ◽  
Author(s):  
George P Eppeldauer ◽  
Howard W Yoon ◽  
Dean G Jarrett ◽  
Thomas C Larason

2012 ◽  
Vol 39 (10) ◽  
pp. 1008006
Author(s):  
胡文川 Hu Wenchuan ◽  
裘祖荣 Qiu Zurong ◽  
张国雄 Zhang Guoxiong

2016 ◽  
Vol 69 (3) ◽  
pp. 655-665 ◽  
Author(s):  
Masak Takeuchi ◽  
Tatsu Sugie ◽  
Shigehar Takeyama ◽  
Kiyosh Itami

2009 ◽  
Vol 25 (4) ◽  
pp. 401-406 ◽  
Author(s):  
Saryn R. Goldberg ◽  
Thomas M. Kepple ◽  
Steven J. Stanhope

We increased the accuracy of an instrumented treadmill’s measurement of center of pressure and force data by calibrating in situ and optimizing the transformation between the motion capture and treadmill force plate coordinate systems. We calibrated the device in situ by applying known vertical and shear loads at known locations across the tread surface and calculating a 6 × 6 calibration matrix for the 6 output forces and moments. To optimize the transformation, we first estimated the transformation based on a locating jig and then measured center-of-pressure error across the treadmill force plate using the CalTester tool. We input these data into an optimization scheme to find the transformation between the motion capture and treadmill force plate coordinate systems that minimized the error in the center-of-pressure measurements derived from force plate and motion capture sources. When the calibration and transformation optimizations were made, the average measured error in the center of pressure was reduced to approximately 1 mm when the treadmill was stationary and to less than 3 mm when moving. Using bilateral gait data, we show the importance of calibrating these devices in situ and performing transformation optimizations.


Sign in / Sign up

Export Citation Format

Share Document