scholarly journals Extended virtual in-situ calibration method in building systems using Bayesian inference

2017 ◽  
Vol 73 ◽  
pp. 20-30 ◽  
Author(s):  
Sungmin Yoon ◽  
Yuebin Yu
Metrologia ◽  
2013 ◽  
Vol 50 (5) ◽  
pp. 509-517 ◽  
Author(s):  
George P Eppeldauer ◽  
Howard W Yoon ◽  
Dean G Jarrett ◽  
Thomas C Larason

2012 ◽  
Vol 39 (10) ◽  
pp. 1008006
Author(s):  
胡文川 Hu Wenchuan ◽  
裘祖荣 Qiu Zurong ◽  
张国雄 Zhang Guoxiong

2016 ◽  
Vol 69 (3) ◽  
pp. 655-665 ◽  
Author(s):  
Masak Takeuchi ◽  
Tatsu Sugie ◽  
Shigehar Takeyama ◽  
Kiyosh Itami

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5521
Author(s):  
Francisco Javier Andrade Chavez ◽  
Silvio Traversaro ◽  
Daniele Pucci

A crucial part of dynamic motions is the interaction with other objects or the environment. Floating base robots have yet to perform these motions repeatably and reliably. Force torque sensors are able to provide the full description of a contact. Despite that, their use beyond a simple threshold logic is not widespread in floating base robots. Force torque sensors might change performance when mounted, which is why in situ calibration methods can improve the performance of robots by ensuring better force torque measurements. The Model-Based in situ calibration method with temperature compensation has shown promising results in improving FT sensor measurements. There are two main goals for this paper. The first is to facilitate the use and understanding of the method by providing guidelines that show their usefulness through experimental results. Then the impact of having better FT measurements with no temperature drift are demonstrated by proving that the offset estimated with this method is still useful days and even a month from the time of estimation. The effect of this is showcased by comparing the sensor response with different offsets simultaneously during real robot experiments. Furthermore, quantitative results of the improvement in dynamic behaviors due to the in situ calibration are shown. Finally, we show how using better FT measurements as feedback in low and high level controllers can impact the performance of floating base robots during dynamic motions. Experiments were performed on the floating base robot iCub.


2017 ◽  
Vol 123 ◽  
pp. 107-110 ◽  
Author(s):  
Akifumi Iwamoto ◽  
Minoru Nobutoki ◽  
Takuya Kumaki ◽  
Haruhiro Higaki ◽  
Shinji Hamaguchi ◽  
...  

2014 ◽  
Author(s):  
M. Takeuchi ◽  
T. Sugie ◽  
H. Ogawa ◽  
S. Takeyama ◽  
K. Itami

Sign in / Sign up

Export Citation Format

Share Document