tidal loading
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Diana Haritonova

Abstract The objective of this study is to investigate the effect of the Baltic Sea non-tidal loading in the territory of Latvia using observations of the GNSS continuously operating reference stations (CORS) of LatPos, EUPOS®-Riga, EPN and EstPos networks. The GNSS station daily coordinate time series obtained in a double-difference (DD) mode were used. For representation of the sea level dynamics, the Latvian tide gauge records were used. Performed correlation analysis is based on yearly data sets of these observations for the period from 2012 up to 2020. The approach discloses how the non-tidal loading can induce variations in the time series of the regional GNSS station network. This paper increases understanding of the Earth’s surface displacements occurring due to the non-tidal loading effect in Latvia, and is intended to raise the importance and necessity of improved Latvian GNSS time series by removing loading effects.


2021 ◽  
Author(s):  
Norio Matsumoto ◽  
Osamu Kamigaichi

Abstract We conducted in-situ calibration of fifteen multicomponent borehole strainmeters deployed in and around the expected focal zones of the Nankai megathrust earthquake. The in-situ calibration method compares tidal strain observed by the borehole strainmeters with predicted tidal strains from the solid Earth’s tide and oceanic tidal loading. Then we obtained a calibration matrix to transfer observed strain data to the regional strain field. We estimated the oceanic tidal loading accurately using a Green’s function, which takes the depth of deployment into consideration. We calculated four sets of calibration matrices using combinations of any three of a group of four gauges as well as a calibration matrix using all four gauges. The estimated calibration matrix was validated by comparing observed seismic strain waves after applying the calibration matrix with theoretical seismic strain waves excited by the 2010 Chile earthquake (Mw 8.8). The in-situ calibration was found to be appropriate for all eleven Ishii-type borehole strainmeters and for one of the four Gladwin Tensor Strainmeters (GTSMs). It was also effective with respect to two shear strains for two of the other three GTSMs.


2021 ◽  
Author(s):  
Przemysław Dykowski ◽  
Kamila Karkowska ◽  
Marcin Sękowski ◽  
Paul Kane

<p>In June of 2018 a project for the establishment of a modern permanent Absolute Gravity Network  on the island of Ireland was initiated by the National Mapping Agency of Ireland, Ordnance Survey Ireland (OSi) with the cooperation of  Institute of Geodesy and Cartography (IGiK), and Land and Property Services (LPS) in Northern Ireland. The project assumes conducting absolute gravity surveys of the network using  the A10 absolute gravimeter on approximately 60 stations homogenously distributed on the island of Ireland.</p><p>Data processing includes time variable corrections for body tides, barometric pressure, polar motion as well as ocean tidal loading. For Ireland the ocean tidal loading effect can reach peaks of between 400 nm/s<sup>2</sup> on the west coast and 200 nm/s<sup>2</sup> on the east coast. This effect is significant and up to now the authors are unaware of previous historical data or  tidal gravity records being performed in Ireland. Hence it was considered as a valid component of the overall Absolute Gravity Project to evaluate the current situation with ocean tidal loading effect in Ireland using gravimetric tidal records in order to validate available ocean tidal loading models.</p><p>In order to assure the most optimal use of ocean tidal model as well as minimize the errors of including ocean tidal correction in absolute gravity processing the LaCoste&Romberg model G spring gravimeter was installed at OSi headquarters in Phoenix Park, Dublin, Ireland. Over a continuous period of 28 months gravity record with more than 99% data completeness at near 2Hz sampling rate was conducted.</p><p>The project data was acquired through using a self-programmed Raspberry Pi computer allowing for automatic download and remote access to the data.</p><p>A set of CSR, DTU, EOT, FES, GOT, TPXO (ocean tide loading provider – Chalmers, http://holt.oso.chalmers.se/loading/) ocean tidal loading models were used in a joint analysis with the collected tidal record. Analysis included performing tidal adjustment of the gravity data in the ETERNA 3.40 (ET34-X-V73) as well as comparison of IAG (International Association of Geodesy) recommended model combinations with the collected data.</p><p>Recommendations by the project team as to which of the ocean tidal models is most suitable to be used in Ireland for the purpose of absolute gravity measurements were made.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasutaka Omori ◽  
Hiroyuki Nagahama ◽  
Yumi Yasuoka ◽  
Jun Muto

AbstractThe presence of anomalous geochemical changes related to earthquakes has been controversial despite widespread, long time challenges for earthquake prediction. Establishing a quantitative relationship among geochemical changes and geodetical and seismological changes can clarify their hidden connection. Here we determined the response of atmospheric radon (222Rn) to diurnal tidal (K1 constituent) loading in the reported 11-year-long variation in the atmospheric radon concentration, including its anomalous evolution for 2 months before the devastating 1995 Kobe earthquake in Japan. The response to the tidal loading had been identified for 5 years before the occurrence of the earthquake. Comparison between these radon responses relative to crustal strain revealed that the response efficiency for the diurnal K1 tide was larger than that for the earthquake by a factor of 21–33, implying the involvement of crustal fluid movement. The radon responses occurred when compressional crustal stress decreased or changed to extension. These findings suggest that changes in radon exhaled from the ground were induced by ascent flow of soil gas acting as a radon carrier and degassed from mantle-derived crustal fluid upwelling due to modulation of the crustal stress regime.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Matthias Glomsda ◽  
Mathis Bloßfeld ◽  
Manuela Seitz ◽  
Florian Seitz

AbstractIn the analysis of very long baseline interferometry (VLBI) observations, many geophysical models are used for correcting the theoretical signal delay. In addition to the conventional models described by Petit and Luzum (eds) (IERS Conventions, 2010), we are applying different parts of non-tidal site loading, namely the atmospheric, oceanic, and hydrological ones. To investigate their individual contributions, these parts are considered both separately and combined to a total loading. The application of the corresponding site displacements is performed at two distinct levels of the geodetic parameter estimation process (observation and normal equation level), which turn out to give very similar results in many cases. To validate our findings internally, the site displacements are provided by two different data centres: the Earth-System-Modelling group at the Deutsches GeoForschungsZentrum in Potsdam (ESMGFZ, see Dill and Dobslaw, J Geophys Res Solid Earth, 2013. 10.1002/jgrb.50353)] and the International Mass Loading Service [IMLS, see Petrov (The international mass loading service, 2015)]. We show that considering non-tidal loading is actually useful for mitigating systematic effects in the VLBI results, like annual signals in the station height time series. If the sum of all non-tidal loading parts is considered, the WRMS of the station heights and baseline lengths is reduced in 80–90% of all cases, and the relative improvement is about $$-\,3.5$$ - 3.5 % on average. The main differences between our chosen providers originate from hydrological loading.


2020 ◽  
Vol 12 (15) ◽  
pp. 2477
Author(s):  
Liansheng Deng ◽  
Hua Chen ◽  
Ailong Ma ◽  
Qusen Chen

Vertical deformations caused by non-tidal mass variations still remain in global navigation satellite system (GNSS) height time series, and can be computed from both Gravity Recovery and Climate Experiment (GRACE) and geophysical models. In this study, we provide a thorough evaluation of the relationships between these different techniques in the global scale by comparing non-tidal vertical deformations from IGS second reprocessing campaign (IG2), GRACE and Global Geophysical Fluid Center (GGFC) solutions, and investigate the noise properties of the GNSS corrected by GRACE solutions and GNSS corrected by GGFC solutions for global stations using optimal noise models. Our results demonstrate that the consistency between seasonal vertical deformations derived from GNSS, GRACE and GGFC is high. When correcting GNSS deformations with GRACE and GGFC solutions, 81% and 73% of the 186 stations have the weight root mean square (WRMS) reduction, respectively. The WRMS variations averaged over all stations are −12.3% and −5.6%, respectively for GNSS corrected by GRACE and GNSS corrected by GGFC solutions. The obvious difference occurs in the GNSS corrected by GGFC solutions WRMS increase, with the mean increase value up to 29%, mainly happening to stations located on islands or small peninsulas. In addition, noise properties of the GNSS corrected by GRACE solutions and GNSS corrected by GGFC solutions for global stations are investigated using optimal noise models. After correcting non-tidal loading effects, the solutions of GNSS corrected by GRACE solutions have the lowest noise level, and can occupy 5% of the noise behavior presenting in global stations, while the solutions of GNSS corrected by GGFC solutions can bring more than 5% of the noise into global stations, implying that GRACE correction solutions can present more favorable results when interpreting GNSS non-tidal loading deformations.


2020 ◽  
Vol 223 (1) ◽  
pp. 454-470
Author(s):  
H R Martens ◽  
M Simons

SUMMARY We investigate the elastic and anelastic response of the crust and upper mantle across Alaska to mass loading by ocean tides. GPS-inferred surface displacements recorded by the Plate Boundary Observatory network are compared with predictions of deformation associated with the redistribution of ocean water due to the tides. We process more than 5 yr of GPS data from 131 stations using a kinematic precise point positioning algorithm and estimate tidal contributions using harmonic analysis. We also forward calculate load-induced surface displacements by convolving ocean-tide models with load Green’s functions derived from spherically symmetric Earth models. We make the comparisons for dominant tidal harmonics in three frequency bands: semidiurnal (M2), diurnal (O1) and fortnightly (Mf). Vector differences between predicted and observed ocean tidal loading (OTL) displacements are predominantly sub-mm in magnitude in all three frequency bands and spatial components across the network, with larger residuals of up to several mm in some coastal areas. Accounting for the effects of anelastic dispersion in the upper mantle using estimates of Q from standard Earth models reduces the residuals for the M2 harmonic by an average of 0.1–0.2 mm across the network and by more than 1 mm at some individual stations. For the relatively small Mf tide, the effects of anelastic dispersion (<0.03 mm) are undetectable within current measurement error. Incorporating a local ocean-tide model for the northeastern Pacific Ocean reduces the M2 vertical residuals by an average of 0.2 mm, with improvements of up to 5 mm at some coastal stations. Estimated RMS observational uncertainties in the vertical component for the M2 and O1 tides are approximately ±0.08 mm at the two-sigma level (±0.03 mm in the horizontal components), and ±0.21 mm for the Mf harmonic (±0.07 mm in the horizontal components). For the M2 harmonic, discrepancies between predicted and observed OTL displacements exceed observational uncertainties by about one order of magnitude. None of the ocean tide and Earth model combinations is found to reduce the M2 residuals below the observational uncertainty, and no single forward model provides a best fit to the observed displacements across all tidal harmonics and spatial components. For the O1 harmonic, discrepancies between predicted and observed displacements are generally several-fold larger than the observational uncertainties. For the Mf harmonic, the discrepancies are roughly within a factor of two of the observational uncertainties. We find that discrepancies between predicted and observed OTL displacements can be significantly reduced by removing a network-uniform tidal-harmonic displacement, and that the remaining discrepancies exhibit some regional-scale spatial coherency, particularly for the M2 harmonic. We suggest that the remaining discrepancies for the M2, O1 and Mf tides cannot be fully explained by measurement error and instead convey information about deficiencies in ocean-tide models and deviations from spherically symmetric Earth structure.


2020 ◽  
Vol 177 (9) ◽  
pp. 4217-4228
Author(s):  
Monika Tercjak ◽  
André Gebauer ◽  
Marcin Rajner ◽  
Aleksander Brzeziński ◽  
Karl Ulrich Schreiber

Abstract The ring laser gyroscope (RLG) technique has been investigated for over 20 years as a potential complement to space geodetic techniques in measuring Earth rotation. However, RLGs are also sensitive to changes in their terrestrial orientation. Therefore in this paper, we review how the high-frequency band (i.e. signals shorter than 0.5 cycle per day) of the known phenomena causing site deformation contribute to the RLG observable, the Sagnac frequency. We study the impact of solid Earth tides, ocean tidal loading and non-tidal loading phenomena (atmospheric pressure loading and continental hydrosphere loading). Also, we evaluate the differences between available models of the phenomena and the importance of the Love numbers used in modeling the impact of solid Earth tides. Finally, we compare modeled variations in the instrument orientation with the ones observed with a tiltmeter. Our results prove that at the present accuracy of the RLG technique, solid Earth tides and ocean tidal loading effects have significant effect on RLG measurements, and continental hydrosphere loading can be actually neglected. Regarding the atmospheric loading model, its application might introduce some undesired signals. We also show that discrepancies arising from the use of different models can be neglected, and there is almost no impact arising from the use of different Love numbers. Finally, we discuss differences between data reduced with tiltmeter observations and these reduced with modeled signal, and potential causes of this discrepancies.


2020 ◽  
Author(s):  
Benedikt Soja ◽  
Claudio Abbondanza ◽  
T. Mike Chin ◽  
Richard Gross ◽  
Michael Heflin ◽  
...  

<p>The ITRF2014 candidate solutions DTRF2014 and JTRF2014 provide time-dependent station coordinates accounting for irregular station motions. DTRF2014 by DGFI-TUM expands the secular coordinate model via non-tidal loading corrections caused by changes in the atmosphere and continental water storage. JTRF2014 by JPL follows a time series approach to TRF determination based on Kalman filtering, providing weekly updates to station coordinates. The process noise model of the Kalman filter is derived from non-tidal loading deformations.</p><p>Global features in station displacements have been studied in the past by determining coefficients of spherical harmonics. So far, studies have mostly focused on individual coordinate components at a time. Typically, the vertical coordinate component is of most interest, since it most often contains the largest signals.</p><p>In this work, we apply the concept of vector spherical harmonics (VSH) to study temporal variations in station displacements of DTRF2014 and JTRF2014. The advantage of VSH compared to scalar spherical harmonics is that all three coordinate components can be considered at the same time. We estimate VSH coefficients up to degree-2, which includes dipole and quadrupole deformations. Degree-1 deformations represent translations and rotations of the frame, while degree-2 terms contain, inter alia, information on the oblateness of the Earth. We use VSH to analyze station displacements of DTRF2014 and JTRF2014 individually and to conduct comparisons between the two frames. Furthermore, since the temporal variations in both DTRF2014 and JTRF2014 are linked to non-tidal loading deformations, our analysis of temporal variations in VSH coefficients allows for geophysical interpretation.</p><p> </p>


GPS Solutions ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Anthony Mémin ◽  
Jean-Paul Boy ◽  
Alvaro Santamaría-Gómez

Sign in / Sign up

Export Citation Format

Share Document