scholarly journals Effects of the German Renewable Energy Sources Act and environmental, social and economic factors on biogas plant adoption and agricultural land use change

2020 ◽  
Author(s):  
Xueqing Yang ◽  
Yang Liu ◽  
Daniela Thrän ◽  
Alberto Bezama ◽  
Mei Wang

Abstract Background: The German energy transition strategy calls for a reform of the German energy sector. As a result, the Germany Renewable Energy Sources Act (EEG) was passed in 2000 and is widely regarded as successful legislation for promoting bioenergy development. More than 1,000 biogas plants were constructed in Central Germany (CG) between 2000 and 2014. Despite this, few studies have been conducted for this period that systematically investigate how environmental, social and economic factors, as well as various EEG amendments have impacted biogas production and what the environmental consequence of biogas production development in CG have been. Methods: The impacts of environmental, social and economic factors and different EEG amendments on biogas production decisions in CG were quantified using multivariate linear regression model and the event study econometric technique. A GIS-based spatial analysis was also conducted to provide insight into the changes to agricultural land use that resulted from the development of biogas plants during the EEG period. Results: The main finding was that the income diversification effect resulting from biogas production was the most important factor in a farmer’s decision to adopt biogas production. In addition, all of the EEG amendments had a significant influence on the adoption of biogas production, however EEG III and IV, which tried to promote small-scale plants, were unable to reduce the average size of the plants constructed in these two amendment periods. From a landscape perspective, there was a striking increase in the cultivation of silage maize in CG from 2000 to 2014. Silage maize was intensively cultivated in regions with a high installed biogas plant capacity. Since the first EEG amendment, permanent grassland area slightly increased while arable land area declined in CG. Conclusions: The adoption of biogas production in CG was strongly driven by economic incentives for the farmers, more precisely, by the incentive to diversify their income sources. In addition to increase the subsidy, future EEG amendments should find new measures to encourage the adoption of small-scale biogas plants, which had been unsuccessful in EEG amendments III and IV.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueqing Yang ◽  
Yang Liu ◽  
Daniela Thrän ◽  
Alberto Bezama ◽  
Mei Wang

Abstract Background The German energy transition strategy calls for a reform of the German energy sector. As a result, the German Renewable Energy Sources Act (EEG) passed in 2000 is widely regarded as successful legislation for promoting bioenergy development. More than 1000 biogas plants were constructed in Central Germany (CG) between 2000 and 2014. Despite this, few studies have been conducted for this period, which systematically investigate how environmental, social and economic factors, as well as various EEG amendments have impacted biogas production or what the environmental consequences of biogas production development in CG have been. Methods The impacts of environmental, social and economic factors and different EEG amendments on biogas production decisions in CG were quantified using a multivariate linear regression model and the event study econometric technique. A GIS-based spatial analysis was also conducted to provide insight into the changes to agricultural land use that resulted from the development of biogas plants during the EEG period. Results The main finding was that the income diversification effect resulting from biogas production was the most important factor in a farmer’s decision to adopt biogas production. In addition, all of the EEG amendments had a significant influence on the adoption of biogas production; however, EEG III and IV, which tried to promote small-scale plants, were unable to reduce the average size of the plants constructed in these two amendment periods. From a landscape perspective, there was a striking increase in the cultivation of silage maize in CG from 2000 to 2014. Silage maize was intensively cultivated in regions with a high installed biogas plant capacity. Since the first EEG amendment, permanent grassland area slightly increased while arable land area declined in CG. Conclusions The adoption of biogas production in CG was strongly driven by economic incentives for the farmers, more precisely, by the incentive to diversify their income sources. In addition to increase the subsidy, future EEG amendments should find new measures to encourage the adoption of small-scale biogas plants, which had been unsuccessful in EEG amendments III and IV.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueqing Yang ◽  
Yang Liu ◽  
Daniela Thrän ◽  
Alberto Bezama ◽  
Mei Wang

An amendment to this paper has been published and can be accessed via the original article.


Author(s):  
Anita Zapalowska ◽  
Ulyana Bashutska

In addition to hydroelectric power plants, solar and wind power plants, biogas plants are important in the production of electricity and heat from renewable energy sources. It is known that depending on the type of substrate used for processing and the design features of biogas plants, they have their own advantages and disadvantages. Nevertheless, properly localized biomass installation is able to decrease the use of conventional materials reducing greenhouse gas emissions. Bio-waste, plant residues and other by-products can be used to produce electricity, heat and purified methane as fuel for repaired vehicles. Biogas production is a key technology for the sustainable use of agricultural biomass as a renewable energy source. Both, Poland and Ukraine, have a large agricultural area, and well developed animal cattery, which creates opportunities for alternative energy sources from biomass development.          Agricultural biogas plant energy produced from waste such manure, slurry and another agricultural waste, is an excellent source of heat, likewise, electricity. Therefore the importance of using agricultural waste as an energy source in the production of biogas shall be emphasized. A significant drawback of the system is the need to provide low economic and environmental losses. For this purpose, the place of biomass harvesting, transport and its preparation together with storage should be taken into account. To achieve the highest efficiency, small biogas plants should have permanent composition of substrate consisting of various ingredients.                 Ukraine and Poland has considerable potential of renewable energy sources development of which can provide significant economic, ecological, and social benefits. The production of biogas has become an attractive source of extra income for many farmers. Biogas production has a useful effect not only on economic, but ecological development, particularly in the rural regions. At the same time, environmental protection aspects have gained additional importance, so that anaerobic treatment processes have become a key technology for environmental and climate protection.          On the basis of the submitted documentation by the municipal administration and the manufacturer, the operation of biogas plants for the processing of organic agricultural waste in Gorajec and Odrzechowa (Poland) has been presented.


10.14311/1173 ◽  
2010 ◽  
Vol 50 (2) ◽  
Author(s):  
J. Koller

The biogas generated in biogas plants offers significant potential for the production of energy from renewable energy sources. The number biogas plants in the Czech Republic is expected to exceed one hundred in the near future. Substrates from agriculture, industry and municipal wastes are used for biogas production. Biogas plants usually use co-generation units to generate electricity and heat. Increased effectiveness can be achieved by using heat as a source of energy for producing renewable natural gas.


2021 ◽  
Author(s):  
Janis Millers ◽  
◽  
Irina Pilvere ◽  

With the adoption of the Green Deal in the European Union (EU), the role of biodiversity, basic principles of the circular economy, climate change mitigation, forest protection and renewable energy increased. Since 2007, biogas production in Latvia has increased significantly, as it was possible to receive co-funding from the EU Funds for the construction of biogas plants. In 2021, inputs of agricultural origin are used by 40 biogas plants with an average installed capacity of 1 MW. The emergence of biogas plants on livestock farms is facilitated by the development of a circular economy producing waste from the production process – manure and feed waste. Anaerobic fermentation results in digestate – a nutrient-rich plant fertilizer that reduces the application of chemical fertilizers. Rational use of biogas can reduce the need for fossil fuels. Energy production from biogas should be encouraged, as waste is used efficiently, thereby generating energy and reducing the release of greenhouse gases into the atmosphere. In Latvia, livestock production is one of the key industries of the national economy, which produces manure and feed waste. The present research calculated the amounts of cattle, pig and poultry manure and feed waste in Latvia. The research analysed livestock farms by number of cattle, pigs and poultry, the potential amounts of manure and waste produced and theoretical biogas output. Theoretically, 309 farms analysed can produce 93.5 mln. m3 of biogas from agricultural waste and construct 269 new biogas plants. A policy for supporting the construction of new biogas plants would contribute to the country’s independence from fossil energy sources, as well as increase the proportion of renewable energy sources to 50-70 % in final energy consumption by 2030. Farmers on whose farms a biogas plant could be built need to carefully consider the uses of the biogas produced. The uses could be thermal energy generation for heat supply, cogeneration (thermal and electrical energy) or biomethane production.


Sign in / Sign up

Export Citation Format

Share Document