scholarly journals Structural Characterization of Iron Oxide Grown On 18% Ni-Co-Mo-Ti Ferrous Base Alloy Aged Under Superheated Steam Atmosphere

Author(s):  
Andréia de Souza Martins Cardoso ◽  
Hugo Ribeiro da Igreja ◽  
Pedro Soucasaux Pires Garcia ◽  
Rodrigo Chales ◽  
Juan Manuel Pardal ◽  
...  

Abstract 18% Ni-Co-Mo-Ti Ferrous base alloys are special materials, widely used in the industry of ​​isotopic enrichment after specific annealing and aging thermal treatment. The desirable high mechanical properties can then be attained by adequate aging heat treatment, answering the structural materials specifications required by defense applications in aerospace and nuclear engineering. For instance, the isotopic enrichment, in rocket engine envelope application, when associated with high temperature and chemical residues like acidic solutions, can induce corrosion and hydrogen embrittlement in martensite structures. To limit these corrosion and hydrogen embrittlement phenomena, an adherent and protective layer of iron oxides can be grown on the material surface by using adequate atmosphere during the aging treatment. Due to its application in strategic areas, the characterization of these oxide layers in maraging steels is of importance as well as the understanding of their growth kinetics. For this purpose, several techniques, such as Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), Microabrasive wear testing, Hardness, Grazing Incidence X-ray Diffraction (GIXRD) and X-ray Photoelectron Spectroscopy (XPS), have been performed for chemical and structural characterization of the oxide films formed after vapor exposed thermal aging at 510°C . The oxide layer consists mostly in two sub-layers composed by magnetite (Fe3O4) and an external layer of hematite (Fe2O3). A thick interface between the oxide layer and the bulk is enriched in Ti and Mo, whereas the analyses of deep bulk material show an enriched area with Ni and Co.

1988 ◽  
Vol 134 ◽  
Author(s):  
Long Y. Chiang ◽  
Rodney V. Kastrup ◽  
Chang S. Hsu ◽  
John W. Swirczewski

ABSTRACTThe structure of quinoline oligomers synthesized by the catalytic dehydrogenative condensation reaction of 1,2,3,4-tetrahydroquinoline was elucidated on the basis of various spectroscopic data including the 2D COSY 1H NMR. The x-ray crystal structural study of two quinoline dimers successfully isolated from the bulk material resolved the puzzle of ring conjunction positions between quinoline units of the oligomer product. A reaction mechanism is proposed. From this mechanism a delicate balance between dehydrogenation and polymerization activity of the catalyst is required to optimize the yield and the molecular weight of the product.


2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 61-66 ◽  
Author(s):  
B. Peplinski ◽  
B. Adamczyk ◽  
G. Kley ◽  
K. Adam ◽  
F. Emmerling ◽  
...  

Author(s):  
Shabana Noor ◽  
Richard Goddard ◽  
Fehmeeda Khatoon ◽  
Sarvendra Kumar ◽  
Rüdiger W. Seidel

AbstractSynthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes with the formula [ZnLn(HL)(µ-OAc)(NO3)2(H2O)x(MeOH)1-x]NO3 · n H2O · n MeOH [Ln = Pr (1), Nd (2)] and the crystal and molecular structure of [ZnNd(HL)(µ-OAc)(NO3)2(H2O)] [ZnNd(HL)(OAc)(NO3)2(H2O)](NO3)2 · n H2O · n MeOH (3) are reported. The asymmetrical compartmental ligand (E)-2-(1-(2-((2-hydroxy-3-methoxybenzylidene)amino)-ethyl)imidazolidin-2-yl)-6-methoxyphenol (H2L) is formed from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation, resulting in a peripheral imidazoline ring. The structures of 1–3 were revealed by X-ray crystallography. The smaller ZnII ion occupies the inner N2O2 compartment of the ligand, whereas the larger and more oxophilic LnIII ions are found in the outer O2O2’ site. Graphic Abstract Synthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes (Ln = Pr, Nd) bearing an asymmetrical compartmental ligand formed in situ from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation are reported.


2012 ◽  
Vol 16 (01) ◽  
pp. 154-162 ◽  
Author(s):  
Edwin W.Y. Wong ◽  
Daniel B. Leznoff

The reduction of magnesium phthalocyanine (MgPc) with 2.2 equivalents of potassium graphite in 1,2-dimethoxyethane (DME) gives [K2(DME)4]PcMg(OH)(1) in 67% yield. Compound 1 was structurally characterized using single crystal X-ray crystallography and was found to be a monomeric, heterometallic complex consisting of a μ3-OH ligand that bridges a [MgIIPc3-]- anion to two potassium cations solvated by four DME molecules. An absorption spectrum of 1 confirms the Pc ligand is singly reduced and has a 3–charge. The solid-state structure of 1 does not indicate breaking of the aromaticity of the Pc ligand. Compound 1 is only the second Pc3- complex and the first reduced MgPc to be isolated and structurally characterized.


1997 ◽  
Vol 306 (2) ◽  
pp. 198-204 ◽  
Author(s):  
A.A. Darhuber ◽  
J. Stangl ◽  
V. Holy ◽  
G. Bauer ◽  
A. Krost ◽  
...  

1990 ◽  
Vol 29 (17) ◽  
pp. 3252-3253 ◽  
Author(s):  
John L. Margrave ◽  
Kenton H. Whitmire ◽  
Robert H. Hauge ◽  
Nathan T. Norem

Sign in / Sign up

Export Citation Format

Share Document