scholarly journals Antibiotic Resistance Gene Was Increased via Horizontal Transfer in Single and Two-Chamber Microbial Electrolysis Cells

Author(s):  
Zhao-Bing Guo ◽  
Wen-Long Sun ◽  
Xiao-Jun Zuo ◽  
Hai-Liang Song ◽  
Hao Ling ◽  
...  

Abstract Microbial electrolysis cells (MECs), have been applied for antibiotic degradation, but simultaneously induced antibiotic resistance genes (ARGs), thus representing a risk to disseminate antibiotic resistance. However, there were few studies on the potential and risk of ARGs transmission in the MECs. In this work, conjugative transfer of ARGs was assessed under three tested conditions (voltages, cell concentration, and donor/recipient ratio) in both single and two-chamber MECs. The results indicated that voltages (> 0.9 V) facilitate the frequency in single-chamber the MECs and two-chamber the MECs (in anode chamber). The donor cell number (donor/recipient ratio was 2:1) showed more favor on the transfer frequency. Furthermore, voltages ranged from 0.9 V to 2.5 V increased ROS production and cell membrane permeability in MECs. These findings offer new insights into the roles of ARGs transfer under different applied voltages in the MECs, which should not be ignored for horizontal transfer of antibiotic resistance.

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhou Song ◽  
Lei Zuo ◽  
Cui Li ◽  
Yiming Tian ◽  
Hongning Wang

Copper can persist stably in the environment for prolonged periods. Except for inducing antibiotic resistance in bacteria, copper ions (Cu2+) can facilitate the horizontal transfer of plasmid DNA. However, whether and how Cu2+ can accelerate the conjugative transfer of SXT/R391 integrative and conjugative element (ICE) is still largely unknown. In this study, Proteus mirabilis ChSC1905, harboring an SXT/R391 ICE that carried 21 antibiotic resistance genes (ARGs), was used as a donor, and Escherichia coli EC600 was used as a recipient. Cu2+, at subinhibitory and environmentally relevant concentrations (1–10 μmol/L), significantly accelerated the conjugative transfer of SXT/R391 ICE across bacterial genera (from P. mirabilis to E. coli) (p < 0.05). The combined analyses of phenotypic tests and genome-wide sequencing indicated that reactive oxygen species (ROS) production and cell membrane permeability were critical in the enhanced conjugative transfer of SXT/R391 ICE. Furthermore, the expression of genes related to cell adhesion and ATP synthesis was also significantly upregulated on exposure to Cu2+ at a concentration of 5 μmol/L. This study clarified the potential mechanisms of Cu2+ to promote the conjugative transfer of SXT/R391 ICE, revealing the potential risk imposed by Cu2+ on the horizontal transfer of SXT/R391 ICE-mediated ARGs.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 230
Author(s):  
Shan Wan ◽  
Min Xia ◽  
Jie Tao ◽  
Yanjun Pang ◽  
Fugen Yu ◽  
...  

In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.


2021 ◽  
Vol 9 (4) ◽  
pp. 105289
Author(s):  
Míriam Cerrillo ◽  
Laura Burgos ◽  
Ernesto Serrano-Finetti ◽  
Victor Riau ◽  
Joan Noguerol ◽  
...  

2021 ◽  
Vol 52 (3) ◽  
pp. 279-288
Author(s):  
T.M. Keil ◽  
D. Windisch ◽  
V. Joukov ◽  
J. Niedermeier ◽  
W. Schulz ◽  
...  

Author(s):  
Cláudia A. Ribeiro ◽  
Luke A. Rahman ◽  
Louis G. Holmes ◽  
Ayrianna M. Woody ◽  
Calum M. Webster ◽  
...  

AbstractThe spread of multidrug-resistance in Gram-negative bacterial pathogens presents a major clinical challenge, and new approaches are required to combat these organisms. Nitric oxide (NO) is a well-known antimicrobial that is produced by the immune system in response to infection, and numerous studies have demonstrated that NO is a respiratory inhibitor with both bacteriostatic and bactericidal properties. However, given that loss of aerobic respiratory complexes is known to diminish antibiotic efficacy, it was hypothesised that the potent respiratory inhibitor NO would elicit similar effects. Indeed, the current work demonstrates that pre-exposure to NO-releasers elicits a > tenfold increase in IC50 for gentamicin against pathogenic E. coli (i.e. a huge decrease in lethality). It was therefore hypothesised that hyper-sensitivity to NO may have arisen in bacterial pathogens and that this trait could promote the acquisition of antibiotic-resistance mechanisms through enabling cells to persist in the presence of toxic levels of antibiotic. To test this hypothesis, genomics and microbiological approaches were used to screen a collection of E. coli clinical isolates for antibiotic susceptibility and NO tolerance, although the data did not support a correlation between increased carriage of antibiotic resistance genes and NO tolerance. However, the current work has important implications for how antibiotic susceptibility might be measured in future (i.e. ± NO) and underlines the evolutionary advantage for bacterial pathogens to maintain tolerance to toxic levels of NO.


Sign in / Sign up

Export Citation Format

Share Document