gene quantification
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 4)

Patterns ◽  
2021 ◽  
pp. 100360
Author(s):  
Jiaqi Fan ◽  
Yilin Feng ◽  
Yifan Cheng ◽  
Zitian Wang ◽  
Haoran Zhao ◽  
...  

Author(s):  
Bo Li ◽  
Xu Li ◽  
Tao Yan

Comprehensive microbial risk assessment requires high-throughput quantification of diverse microbial risks in the environment. Current metagenomic next-generation sequencing approaches can achieve high-throughput detection of genes indicative of microbial risks, but lacks quantitative capabilities. This study developed and tested a quantitative metagenomic next-generation sequencing (qmNGS) approach. Numerous xenobiotic synthetic internal DNA standards were used to determine the sequencing yield (Y seq ) of the qmNGS approach, which can then be used to calculate absolute concentration of target genes in environmental samples based on metagenomic sequencing results. The qmNGS approach exhibited excellent linearity as indicated by a strong linear correlation (r 2 = 0.98) between spiked and detected concentrations of internal standards. High-throughput capability of the qmNGS approach was demonstrated with artificial E. coli mixtures and cattle manure samples, for which 95 ± 3 and 208 ± 4 types of antibiotic resistance genes (ARGs) were detected and quantified simultaneously. The qmNGS approach was further compared with qPCR and demonstrated comparable levels of accuracy and less variation for the quantification of six target genes (16S, tetO , sulI , tetM , ermB and qnrS ). IMPORTANCE Monitoring and comprehensive assessment of microbial risks in the environment requires high-throughput gene quantification. The quantitative mNGS (qmNGS) approach developed in this study incorporated numerous xenobiotic and synthetic DNA internal standard fragments into metagenomic NGS workflow, which are used to determine a new parameter called sequencing yield that relates sequence base reads to absolute concentration of target genes in the environmental samples. The qmNGS approach demonstrated excellent method linearity and comparable performance as the qPCR approach with high-throughput capability. This new qmNGS approach can achieve high-throughput and accurate gene quantification in environmental samples, and has the potential to become a useful tool in monitoring and comprehensively assessing microbial risks in the environment.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Emily Crossette ◽  
Jordan Gumm ◽  
Kathryn Langenfeld ◽  
Lutgarde Raskin ◽  
Melissa Duhaime ◽  
...  

ABSTRACT We demonstrate that an assembly-independent and spike-in facilitated metagenomic quantification approach can be used to screen and quantify over 2,000 genes simultaneously, while delivering absolute gene concentrations comparable to those for quantitative PCR (qPCR). DNA extracted from dairy manure slurry, digestate, and compost was spiked with genomic DNA from a marine bacterium and sequenced using the Illumina HiSeq4000. We compared gene copy concentrations, in gene copies per mass of sample, of five antimicrobial resistance genes (ARGs) generated with (i) our quantitative metagenomic approach, (ii) targeted qPCR, and (iii) a hybrid quantification approach involving metagenomics and qPCR-based 16S rRNA gene quantification. Although qPCR achieved lower quantification limits, the metagenomic method avoided biases caused by primer specificity inherent to qPCR-based methods and was able to detect orders of magnitude more genes than is possible with qPCR assays. We used the approach to simultaneously quantify ARGs in the Comprehensive Antimicrobial Resistance Database (CARD). We observed that the total abundance of tetracycline resistance genes was consistent across different stages of manure treatment on three farms, but different samples were dominated by different tetracycline resistance gene families. IMPORTANCE qPCR and metagenomics are central molecular techniques that have offered insights into biological processes for decades, from monitoring spatial and temporal gene dynamics to tracking ARGs or pathogens. Still needed is a tool that can quantify thousands of relevant genes in a sample as gene copies per sample mass or volume. We compare a quantitative metagenomic approach with traditional qPCR approaches in the quantification of ARG targets in dairy manure samples. By leveraging the benefits of nontargeted community genomics, we demonstrate high-throughput absolute gene quantification of all known ARG sequences in environmental samples.


Author(s):  
Avi Srivastava ◽  
Mohsen Zakeri ◽  
Hirak Sarkar ◽  
Charlotte Soneson ◽  
Carl Kingsford ◽  
...  

AbstractTranscript and gene quantification is the first step in many RNA-seq analyses. While many factors and properties of experimental RNA-seq data likely contribute to differences in accuracy between various approaches to quantification, it has been demonstrated (1) that quantification accuracy generally benefits from considering, during alignment, potential genomic origins for sequenced fragments that reside outside of the annotated transcriptome.Recently, Varabyou et al. (2) demonstrated that the presence of transcriptional noise leads to systematic errors in the ability of tools — particularly annotation-based ones — to accurately estimate transcript expression. Here, we confirm the findings of Varabyou et al. (2) using the simulation framework they have provided. Using the same data, we also examine the methodology of Srivastava et al.(1) as implemented in recent versions of salmon (3), and show that it substantially enhances the accuracy of annotation-based transcript quantification in these data.


2021 ◽  
Author(s):  
Jiaqi Fan ◽  
Yilin Feng ◽  
Zitian Wang ◽  
Haoran Zhao ◽  
Yifan Cheng ◽  
...  

2020 ◽  
Author(s):  
Eliah G. Overbey ◽  
Amanda M. Saravia-Butler ◽  
Zhe Zhang ◽  
Komal S. Rathi ◽  
Homer Fogle ◽  
...  

SummaryWith the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility and reusability of pipeline data, to provide a template for data processing of future spaceflight-relevant datasets, and to encourage cross-analysis of data from other databases with the data available in GeneLab.


Talanta ◽  
2020 ◽  
Vol 211 ◽  
pp. 120680
Author(s):  
Yang Pan ◽  
Tuo Ma ◽  
Qi Meng ◽  
Yuxin Mao ◽  
Kaiqin Chu ◽  
...  

GigaScience ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Hong Zheng ◽  
Kevin Brennan ◽  
Mikel Hernaez ◽  
Olivier Gevaert

Abstract Background Long non-coding RNAs (lncRNAs) are emerging as important regulators of various biological processes. While many studies have exploited public resources such as RNA sequencing (RNA-Seq) data in The Cancer Genome Atlas to study lncRNAs in cancer, it is crucial to choose the optimal method for accurate expression quantification. Results In this study, we compared the performance of pseudoalignment methods Kallisto and Salmon, alignment-based transcript quantification method RSEM, and alignment-based gene quantification methods HTSeq and featureCounts, in combination with read aligners STAR, Subread, and HISAT2, in lncRNA quantification, by applying them to both un-stranded and stranded RNA-Seq datasets. Full transcriptome annotation, including protein-coding and non-coding RNAs, greatly improves the specificity of lncRNA expression quantification. Pseudoalignment methods and RSEM outperform HTSeq and featureCounts for lncRNA quantification at both sample- and gene-level comparison, regardless of RNA-Seq protocol type, choice of aligners, and transcriptome annotation. Pseudoalignment methods and RSEM detect more lncRNAs and correlate highly with simulated ground truth. On the contrary, HTSeq and featureCounts often underestimate lncRNA expression. Antisense lncRNAs are poorly quantified by alignment-based gene quantification methods, which can be improved using stranded protocols and pseudoalignment methods. Conclusions Considering the consistency with ground truth and computational resources, pseudoalignment methods Kallisto or Salmon in combination with full transcriptome annotation is our recommended strategy for RNA-Seq analysis for lncRNAs.


Sign in / Sign up

Export Citation Format

Share Document