scholarly journals Mechanical Characteristics of Red Sandstone Under Cyclic Wetting and Drying

Author(s):  
Zhao Baoyun ◽  
Li Yongfei ◽  
Huang Wei ◽  
Zhang Liyun ◽  
Li Wangcheng ◽  
...  

Abstract The bank slope of the Three Gorges Reservoir is affected by seasonal water level fluctuations, which leads to deterioration of the rock mass, resulting in a series of geological disasters such as landslides and mudslides. Therefore, in order to thoroughly understand the degradation mechanism of mechanical characteristics under wetting-drying cycles, uniaxial compression tests and triaxial compression tests were used to reveal the relationship between mechanical characteristics and wetting-drying cycles. Uniaxial compression tests results show that with the number of wetting-drying cycles increases, the mechanical characteristics show a decreasing trend, and the compaction stage of the sample increases significantly. It was found that the first 10 wetting-drying cycles have a greater impact on the mechanical characteristics of red sandstone under the triaxial compression condition, the mechanical parameters such as deviatoric stress, elasticity modulus dropped rapidly under the first 10 cycles and then tend to be stable. Based on the testing data under wetting-drying cycle condition, the mechanical parameters of the statistics damage constitutive model were modified and the results show that the modified damage constitutive model has a high degree of fit with the test data, indicating that the modified mechanical parameters can better reflect the degradation of red sandstone after the wetting-drying cycles. This understanding of the degradation process of the mechanical characteristics under wetting-drying cycles can provide theoretical guidance for the protection of dangerous slopes in the drawdown zone of the Three Gorges Reservoir.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guijie Zhao ◽  
Chen Chen ◽  
Huan Yan

In this work, we first studied the thermal damage to typical rocks, assuming that the strength of thermally damaged rock microelements obeys a Weibull distribution and considering the influence of temperature on rock mechanical parameters; under the condition that microelement failure conforms to the Drucker–Prager criterion, the statistical thermal damage constitutive model of rocks after high-temperature exposure was established. On this basis, conventional triaxial compression tests were carried out on oil shale specimens heated to different temperatures, and according to the results of these tests, the relationship between the temperature and parameters in the statistical thermal damage constitutive model was determined, and the thermal damage constitutive model for oil shale was established. The results show that the thermal damage in oil shale increases with the increase of temperature; the damage variable is largest at 700°C, reaching 0.636; from room temperature to 700°C, the elastic modulus and Poisson’s ratio decrease by 62.66% and 64.57%, respectively; the theoretical stress-strain curve obtained from the model is in good agreement with the measured curves; the maximum difference between the two curves before peak strength is only 5 × 10−4; the model accurately reflects the deformation characteristics of oil shale at high temperature. The research results are of practical significance to the underground in situ thermal processing of oil shale.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lei Shi ◽  
Yang Liu ◽  
Xiangzhen Meng ◽  
Huimei Zhang

To analyze the effects of freeze-thaw cycles and confining pressure on the mechanical properties of red sandstone, through freeze-thaw cycles and triaxial compression tests, full stress-strain curves of different freeze-thaw cycles and different confining pressures were obtained. The degradation degree of red sandstone was quantitatively considered from different mechanical parameters of ultimate stress, elastic modulus, and Poisson’s ratio. Based on summarizing the characteristics of rock under freeze-thaw and load, the total damage variable of rock was determined by the reasonable measurement of freeze-thaw damage variable and load damage variable, and a damage constitutive model under freeze-thaw and load was established. The research showed that the freeze-thaw cycles aggravate the degree of rock damage deterioration, the rock stiffness and strength were reduced, and the characteristics of plastic deformation and ductile failure were more obvious. The confining pressure inhibited red sandstone internal damage, and with the increase of confining pressure, the stiffness and strength and the plastic characteristics were increased. In the overall trend, the mechanical parameters had different sensitivity to the degradation effect of freeze-thaw cycles and confining pressure. Regardless of the increase in the number of freeze-thaw cycles or confining pressure, the strain softening modulus tended to decrease gradually, and red sandstone plastic damage became more obvious after the stress peak. The total damage evolution path of red sandstone reflected the nonlinear influence of freeze-thaw and load on the total damage propagation. The research results provide theoretical support for the improvement of the technology of the effluent coal rock in Balasu Coal Mine.


2009 ◽  
Vol 17 (5) ◽  
pp. 512
Author(s):  
Wu Hui-xian ◽  
Yao Jian-liang ◽  
Liu Yan ◽  
Xue Jun-zeng ◽  
Cai Qing-hua ◽  
...  

2010 ◽  
Vol 30 (3) ◽  
pp. 303-314 ◽  
Author(s):  
Zhi-Jun LU ◽  
Lian-Fa LI ◽  
Han-Dong HUANG ◽  
Min TAO ◽  
Quan-Fa ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document