scholarly journals Study on Mechanical Properties and Damage Characteristics of Red Sandstone under Freeze-thaw and Load

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lei Shi ◽  
Yang Liu ◽  
Xiangzhen Meng ◽  
Huimei Zhang

To analyze the effects of freeze-thaw cycles and confining pressure on the mechanical properties of red sandstone, through freeze-thaw cycles and triaxial compression tests, full stress-strain curves of different freeze-thaw cycles and different confining pressures were obtained. The degradation degree of red sandstone was quantitatively considered from different mechanical parameters of ultimate stress, elastic modulus, and Poisson’s ratio. Based on summarizing the characteristics of rock under freeze-thaw and load, the total damage variable of rock was determined by the reasonable measurement of freeze-thaw damage variable and load damage variable, and a damage constitutive model under freeze-thaw and load was established. The research showed that the freeze-thaw cycles aggravate the degree of rock damage deterioration, the rock stiffness and strength were reduced, and the characteristics of plastic deformation and ductile failure were more obvious. The confining pressure inhibited red sandstone internal damage, and with the increase of confining pressure, the stiffness and strength and the plastic characteristics were increased. In the overall trend, the mechanical parameters had different sensitivity to the degradation effect of freeze-thaw cycles and confining pressure. Regardless of the increase in the number of freeze-thaw cycles or confining pressure, the strain softening modulus tended to decrease gradually, and red sandstone plastic damage became more obvious after the stress peak. The total damage evolution path of red sandstone reflected the nonlinear influence of freeze-thaw and load on the total damage propagation. The research results provide theoretical support for the improvement of the technology of the effluent coal rock in Balasu Coal Mine.

2021 ◽  
pp. 105678952199119
Author(s):  
Kai Yang ◽  
Qixiang Yan ◽  
Chuan Zhang ◽  
Wang Wu ◽  
Fei Wan

To explore the mechanical properties and damage evolution characteristics of carbonaceous shale with different confining pressures and water-bearing conditions, triaxial compression tests accompanied by simultaneous acoustic emission (AE) monitoring were conducted on carbonaceous shale rock specimens. The AE characteristics of carbonaceous shale were investigated, a damage assessment method based on Shannon entropy of AE was further proposed. The results suggest that the mechanical properties of carbonaceous shale intensify with increasing confining pressure and degrade with increasing water content. Moisture in rocks does not only weaken the cohesion but also reduce the internal friction angle of carbonaceous shale. It is observed that AE activities mainly occur in the post-peak stage and the strong AE activities of saturated carbonaceous shale specimens appear at a lower normalized stress level than that of natural-state specimens. The maximum AE counts and AE energy increase with water content while decrease with confining pressure. Both confining pressure and water content induce changes in the proportions of AE dominant frequency bands, but the changes caused by confining pressure are more significant than those caused by water content. The results also indicate that AE entropy can serve as an applicable index for rock damage assessment. The damage evolution process of carbonaceous shale can be divided into two main stages, including the stable damage development stage and the damage acceleration stage. The damage variable increases slowly accompanied by a few AE activities at the first stage, which is followed by a rapid growth along with intense acoustic emission activities at the damage acceleration stage. Moreover, there is a sharp rise in the damage evolution curve for the natural-state specimen at the damage acceleration stage, while the damage variable develops slowly for the saturated-state specimen.


2013 ◽  
Vol 353-356 ◽  
pp. 802-805
Author(s):  
Jian Qing Jiang

Red-sandstone granular soil reinforced with gabion-mesh is a new concept of composite reinforced soil. In order to reveal the mechanical properties of this composite reinforced soil, a series of laboratory triaxial compression tests on specimens reinforced with gabion-mesh were carried out, and 3D discrete element method was introduced to simulate the triaxial tests. The macro stress-strain relation of red-sandstone specimens reinforced with gabion-mesh was reproduced by the 3D discrete element model. The results show that 3D discrete element method is an ideal technique to study the meso-mechanical nature characteristics of gabion-mesh reinforced red-sandstone granular soil.


1994 ◽  
Vol 353 ◽  
Author(s):  
M. Umedera ◽  
A. Fujiwara ◽  
N. Yasufuku ◽  
M. Hyodo ◽  
H. Murata

AbstractA series of triaxial compression tests is being conducted under the drained condition on bentonite and sand mixtures, known as buffer, in saturated and optimum water content states to clarify the mechanical properties of the buffer.It was found that the mechanical properties of bentonite and sand mixtures are strongly influenced by water and bentonite contents: shear strength in a saturated state is less than that in an optimum water content state; shear strength decreases rapidly with increasing bentonite content. Strength properties are much dependent on confining pressure.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Feng Zhu ◽  
Haotian Fan

Flaws existing in rock mass are one of the main factors resulting in the instability of rock mass. Epoxy resin is often used to reinforce fractured rock mass. However, few researches focused on mechanical properties of the specimens with a resin-infilled flaw under triaxial compression. Therefore, in this research, epoxy resin was selected as the grouting material, and triaxial compression tests were conducted on the rock-like specimens with a grout-infilled flaw having different geometries. This study draws some new conclusions. The high confining pressure suppresses the generation of tensile cracks, and the failure mode changes from tensile-shear failure to shear failure as the confining pressure increases. Grouting with epoxy resin leads to the improvement of peak strengths of the specimens under triaxial compression. The reinforcement effect of epoxy resin is better for the specimens having a large flaw length and those under a relatively low confining pressure. Grouting with epoxy resin reduces the internal friction angle of the samples but improves their cohesion. This research may provide some useful insights for understanding the mechanical behaviors of grouted rock masses.


2014 ◽  
Vol 638-640 ◽  
pp. 589-593
Author(s):  
Hong Yi Wang ◽  
Wu Xiu Ding ◽  
Jin Jin Yang

Red sandstone with a strong water softening can cause difficulties of construction projects, especially for slope excavation and support engineering. Therefore, the study on the engineering properties of saturated red sandstone has a important meaning. The mechanical parameters of saturated red sandstone are obtained by the triaxial compression tests. The test results indicate that the ralations between peak strength, elasticity modulus and confining pressure for the saturated specimens are similar with the natural specimens, that is, with the increasing of confining pressure, the peak strength and the elasticity modulus will increase, but the growth rate becomes slowly. Under the same confining pressure, the peak strength and the elasticity modulus of saturated specimen are more smaller than the natural one. The mechanical damage caused by water recedes when the confining pressure increases, so for the geotechnical engineering with larger influence of water, the increasement of confining pressure by the supporting structures is conducive to the stability of rock mass. The research results will provide a theoretical basis for the red sandstone engineering.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Wang ◽  
Shifan Liu ◽  
Chong Shi ◽  
Shanxi Zheng ◽  
Qizhi Zhu

In this research, the conventional triaxial compression experiments for intact red sandstone specimens and the specimens with a single persistent joint at different inclination angles, i.e., 0°, 30°, 45°, and 90°, were conducted at first. Based on the results of the conventional tests, the effects of the confining pressure and the joint inclination angle on the mechanical properties including deformation behavior and strength parameters were summarized and analyzed, respectively. We find that the strength and deformation of jointed red sandstone are enlarged due to the increment of confining pressure, and the mechanical parameters of specimens show a U-shaped development with the rise of the joint angle. Besides, to investigate the effects of the pore pressure on seepage characteristics of rocks with joint angles at 0°, 45°, and 90°, a series of triaxial compression drainage tests on the jointed red sandstone were performed. The results show that the pore pressure has a weakening effect on the strength of jointed specimens, which can reduce the strengthening effect induced by confining pressure. Meanwhile, the tested specimens mostly present shear failure modes. As a result, the mechanical responses, seepage characteristics, and cracking modes in red sandstone containing a single persistent joint under triaxial compression are revealed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lizhuang Cui ◽  
Nan Qin ◽  
Shuai Wang ◽  
Xuezhi Feng

In order to study the mechanical properties of sandstone under the coupling action of chemical erosion and freeze-thaw cycles, the fine-grained yellow sandstone in a mining area in Zigong, China, is collected as the research object. The changes in mechanical properties of yellow sandstone under the coupling action of chemical solution erosion and freeze-thaw cycles are analyzed based on uniaxial compression tests (UCTs) and triaxial compression tests (TCTs). The results show that, with the increase in freeze-thaw cycles, the compressive strength, elastic modulus, and cohesion of the sandstone samples decrease with varying degrees. Under constant freeze-thaw cycles, the most serious mechanical properties of degradation are observed in acidic solution, followed by alkaline solution and neutral solution. Under different confining pressures, the compressive strength and elastic modulus of the sandstone samples decrease exponentially with the increase in freeze-thaw cycles. Under the action of the chemical solution erosion and freeze-thaw cycles, the internal friction angle fluctuates around 30°. For the cohesion degradation, 35.4%, 29.3%, and 27.2% degradation are observed under acidic, alkaline, and neutral solutions. Nuclear magnetic resonance imaging shows that the chemical erosion and freeze-thaw cycles both promote the degradation of rock properties from surface to interior; after 45 freeze-thaw cycles, the mechanical properties drop sharply. To properly design rock tunneling support and long-term protection in the cold region, the impact of both freeze-thaw cycles and chemical erosion should be considered.


2019 ◽  
Vol 9 (16) ◽  
pp. 3234 ◽  
Author(s):  
Jinquan Xing ◽  
Cheng Zhao ◽  
Songbo Yu ◽  
Hiroshi Matsuda ◽  
Chuangchuang Ma

In order to study the mechanical characteristics and cracking behavior of jointed rock mass under hydro-mechanical coupling, a series of uniaxial compression tests and triaxial compression tests were carried out on cylinder gypsum specimens with a single pre-existing flaw. Under different confining pressures, water pressure was injected on the pre-existing flaw surface through a water injection channel. The geometrical morphology and tensile or shear properties of the cracks were determined by X-ray computed tomography (CT) and scanning electron microscope (SEM). Based on the macro and micro observation, nine types of cracks that caused the specimen failure are summarized. The results of mechanical properties and crack behavior showed that the confining pressure inhibited the tensile cracks, and shear failure occurred under high confining pressure. The water pressure facilitated the initiation and extension of tensile crack, which made the specimens prone to tensile failure. However, under the condition of high confining pressure and low water pressure, the lubrication effect had a significant effect on the failure pattern, under which the specimens were prone to shear failure. This experimental research on mechanical properties and cracking behavior under hydro-mechanical coupling is expected to increase its fundamental understanding.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Maoyan Ma ◽  
Yishun Huang ◽  
Guangyong Cao ◽  
Jian Lin ◽  
Shiliang Xu

Study of frozen rock mechanical properties is necessary for safe application of the artificial ground freezing method in excavation of Chinese western water-rich soft rock layers. Triaxial compression tests and NMR test for samples from the western Jurassic sandstone were performed to investigate rock mechanical properties affected by low temperature and confining pressure. The results show mechanical parameters such as peak strength, cohesion, internal friction angle, residual strength, and elasticity modulus increased with the decreasing temperature under stable pressure, and the above parameters increased with the increasing confining pressure at a certain temperature. In particular, the growth rate of the rock strength would decline when the temperature was below −10°C in this study. Strength attenuation coefficients increased with the decreasing temperature, which indicated higher brittleness, whereas plastic characters got more obvious with the increasing confining pressure at a stable temperature. Furthermore, during the first two freezing stages, porosity decreased sharply with obvious increase of pore (crack) ice content, while porosity varied little at the third stage, which was the reason for the growth rate of rock strength declining with continuous low temperature from microcosmic point of view.


2014 ◽  
Vol 852 ◽  
pp. 441-446 ◽  
Author(s):  
Xing Xia Wang ◽  
Wen Juan Ma ◽  
Jian Wen Huang ◽  
Zai Yi Liao

The mechanical properties of rock mass under unloading conditions are essentially different from that under loading conditions. Triaxial compression tests and unloading confining pressure tests are conducted, and test results show that unloading failure is more brittle, and rock samples suffer more damage under unloading failure. The larger the initial confining pressure is, the easier of unloading failure is occurred. The increasing or decreasing values of rock deformation modulus under unloading conditions are within 10% of rock triaxial compressive strength. Unloading failure leads to deterioration of rock deformation modulus, which decreases gradually with confining pressure decreasing, and the decrease rates get bigger and bigger with unloading ratio of confining pressure increasing. Deformation modulus is only 24-34% of that under loading condition when rock strength goes down to residual strength.


Sign in / Sign up

Export Citation Format

Share Document