scholarly journals A Thermal Damage Constitutive Model for Oil Shale Based on Weibull Statistical Theory

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guijie Zhao ◽  
Chen Chen ◽  
Huan Yan

In this work, we first studied the thermal damage to typical rocks, assuming that the strength of thermally damaged rock microelements obeys a Weibull distribution and considering the influence of temperature on rock mechanical parameters; under the condition that microelement failure conforms to the Drucker–Prager criterion, the statistical thermal damage constitutive model of rocks after high-temperature exposure was established. On this basis, conventional triaxial compression tests were carried out on oil shale specimens heated to different temperatures, and according to the results of these tests, the relationship between the temperature and parameters in the statistical thermal damage constitutive model was determined, and the thermal damage constitutive model for oil shale was established. The results show that the thermal damage in oil shale increases with the increase of temperature; the damage variable is largest at 700°C, reaching 0.636; from room temperature to 700°C, the elastic modulus and Poisson’s ratio decrease by 62.66% and 64.57%, respectively; the theoretical stress-strain curve obtained from the model is in good agreement with the measured curves; the maximum difference between the two curves before peak strength is only 5 × 10−4; the model accurately reflects the deformation characteristics of oil shale at high temperature. The research results are of practical significance to the underground in situ thermal processing of oil shale.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1309 ◽  
Author(s):  
Yunliang Tan ◽  
Qingheng Gu ◽  
Jianguo Ning ◽  
Xuesheng Liu ◽  
Zhichuang Jia ◽  
...  

The mechanical properties of mortar materials in construction are influenced both by their own proportions and external loads. The trend of the stress–strain curve in cracks compaction stage has great influence on the relationship between the strength and deformation of cement mortar. Uniaxial compression tests of mortar specimens with different cement–sand ratios and loading rates were carried out, and the stored and dissipated energies were calculated. Results indicated that the elastic modulus and strength of mortar specimens increase with the cement–sand ratio and loading rate. The energy dissipation shows good consistency with the damage evolution. When the loading rate is less than 1.0 mm/min, most of the constitutive energy at the peak point is stored in the specimen and it increase with cement–sand ratio. A simple representation method of axial stress in cracks compaction stage was proposed and an energy-based damage constitutive model—which can describe well the whole process of cement mortar under uniaxial compression—was developed and verified.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fei Li ◽  
Shuang You ◽  
Hongguang Ji ◽  
Hao Wang

Deep brittle rock exhibits characteristics of rapid stress dropping rate and large stress dropping degree after peak failure. To simulate the whole process of deformation and failure of the deep brittle rock under load, the Lemaitre strain equivalent theory is modified to make the damaged part of the rock has residual stress. Based on the damage constitutive model considering residual strength characteristics, a correction factor reflecting stress dropping rate is added, the Weibull distribution is used to describe the inhomogeneity of rock materials, and Drucker–Prager criterion is used to quantitatively describe the influence of stress on damage; a damage constitutive model of deep brittle rock considering stress dropping characteristics is established. According to the geometric features of the rock stress-strain curve, the theoretical expressions of model parameters are derived. To verify the rationality of the model, triaxial compression experiments of deep brittle rock under different confining pressures are conducted. And the influence of model parameters on rock mechanical behaviour is analysed. The results show that the model reflects the stress dropping characteristics of deep brittle rock and the theoretical curve is in good agreement with the experimental results, which indicates that the proposed constitutive model is scientific and feasible.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhang Rongrong ◽  
Yang Yi ◽  
Ma Dongdong

To investigate the coupling damage characteristics of rock after high-temperature treatment under impact load, dynamic uniaxial compression tests for deep sandstone specimen under laboratory conditions varying with high temperature (i.e., 25°C, 100°C, 300°C, 500°C, 700°C, and 900°C) and strain rate (i.e., 170 s-1, 205 s-1, and 240 s-1) were performed using splitting Hopkinson pressure bar (SHPB) system. Coupling damage variable of deep sandstone was deduced based on the Lemaitre equivalent strain theory. Moreover, the damage parameters of deep sandstone were systematically determined according to the test data, and the effects of high temperature and strain rate on damage growth curves were investigated. Finally, a dynamic compound damage constitutive model, which could consider the coupling damage, was established and verified to describe the dynamic mechanical characteristic of deep sandstone. Theoretical and experimental results indicated that the simulated stress-strain curves matched the test data well and the proposed coupling damage constitutive model could reflect the high temperature-induced weakening and strain rate strengthening effect.


2019 ◽  
Vol 9 (12) ◽  
pp. 2424 ◽  
Author(s):  
Sijiang Wei ◽  
Yushun Yang ◽  
Chengdong Su ◽  
Syabilla Rachmadina Cardosh ◽  
Hao Wang

In order to study the effect of high temperature on the mechanical properties of rock, two groups of coarse sandstone samples were subjected to the uniaxial compression and triaxial compression test at room temperature of 25 °C and high temperatures of 100~1000 °C. The study comes to some conclusions: (1) With the increase of temperature, the longitudinal wave velocity gradually decreases, and the damage factor of temperature gradually increases. (2) For uniaxial compression tests at different temperatures, the high temperature action within 500 °C has a strengthening effect on the compression strength, and the high temperature effect has a weakening effect on the compression strength when temperatures exceed 500 °C; so 500 °C is the temperature threshold. (3) For triaxial compression tests at different temperatures, the rock strength is positively correlated with temperature and confining pressure when the temperature is lower than 800 °C and the confining pressure is lower than 15 MPa; the rock strength is negatively correlated with temperature and confining pressure when the temperature is over 800 °C and confining pressure is above 15 MPa, so 800 °C is the temperature threshold, and 15 MPa is the confining pressure threshold. (4) In the triaxial compression, the actual fracture angle of the sample after high temperature is basically the same as the theoretical calculation value, high temperature has little effect on the actual fracture angle of the sample, and the actual fracture angle is negatively correlated with the confining pressure.


2021 ◽  
Author(s):  
Zhao Baoyun ◽  
Li Yongfei ◽  
Huang Wei ◽  
Zhang Liyun ◽  
Li Wangcheng ◽  
...  

Abstract The bank slope of the Three Gorges Reservoir is affected by seasonal water level fluctuations, which leads to deterioration of the rock mass, resulting in a series of geological disasters such as landslides and mudslides. Therefore, in order to thoroughly understand the degradation mechanism of mechanical characteristics under wetting-drying cycles, uniaxial compression tests and triaxial compression tests were used to reveal the relationship between mechanical characteristics and wetting-drying cycles. Uniaxial compression tests results show that with the number of wetting-drying cycles increases, the mechanical characteristics show a decreasing trend, and the compaction stage of the sample increases significantly. It was found that the first 10 wetting-drying cycles have a greater impact on the mechanical characteristics of red sandstone under the triaxial compression condition, the mechanical parameters such as deviatoric stress, elasticity modulus dropped rapidly under the first 10 cycles and then tend to be stable. Based on the testing data under wetting-drying cycle condition, the mechanical parameters of the statistics damage constitutive model were modified and the results show that the modified damage constitutive model has a high degree of fit with the test data, indicating that the modified mechanical parameters can better reflect the degradation of red sandstone after the wetting-drying cycles. This understanding of the degradation process of the mechanical characteristics under wetting-drying cycles can provide theoretical guidance for the protection of dangerous slopes in the drawdown zone of the Three Gorges Reservoir.


Author(s):  
Jinyong Pei ◽  
Huagang He ◽  
Dongtao Hu ◽  
Shanke Lv ◽  
Jing Wang ◽  
...  

Temperature gradient significantly affects the production of surrounding rock stress in mining engineering. The mechanics and deformation characteristics of the rock will change under the temperature gradient, thereby increasing the probability of accidents in the roadway. This paper conducts uniaxial compression tests on granite at different temperatures from room temperature to 250∘C, and analyzes in detail the changes in the stress-strain curve, peak stress, peak strain and tangent modulus of granite under high temperature and different temperature gradient conditions. The results of this study are as follows: (1) Under high temperature conditions, the granite’s peak stress and tangent elastic modulus increased with temperature from 17 to 100∘C, then decreased from 100∘C to 250∘C, whereas the granite’s peak strain increased steadily with increasing temperature; (2) under temperature gradient, the granite’s peak stress and tangent modulus first decreased and then increased with increasing temperature gradient, while the granite’s peak strain first decreased and then increased at 100∘C, but first increased and then decreased from 150∘C to 250∘C.


2014 ◽  
Vol 1039 ◽  
pp. 107-111
Author(s):  
Yang Chen ◽  
Gui Qin Li ◽  
Bin Ruan ◽  
Xiao Yuan ◽  
Hong Bo Li

The mechanical behavior of plastic material is dramatically sensitive to temperature. An method is proposed to predict the mechanical behavior of plastics for cars, ranging from low-temperature low temperature ≤-40°C to high temperature ≥80°C. It dominates the behavior of plastic material based on improved constitutive model in which the parameters adjusted by a series of tests under different temperatures. The method is validated with test and establishes the basis for research and development of plastic parts for automobile as well.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2350 ◽  
Author(s):  
Jun Peng ◽  
Sheng-Qi Yang

High temperature treatment has a significant influence on the mechanical behavior and the associated microcracking characteristic of rocks. A good understanding of the thermal damage effects on rock behavior is helpful for design and stability evaluation of engineering structures in the geothermal field. This paper studies the mechanical behavior and the acoustic emission (AE) characteristic of three typical rocks (i.e., sedimentary, metamorphic, and igneous), with an emphasis on how the difference in rock type (i.e., porosity and mineralogical composition) affects the rock behavior in response to thermal damage. Compression tests are carried out on rock specimens which are thermally damaged and AE monitoring is conducted during the compression tests. The mechanical properties including P-wave velocity, compressive strength, and Young’s modulus for the three rocks are found to generally show a decreasing trend as the temperature applied to the rock increases. However, these mechanical properties for quartz sandstone first increase to a certain extent and then decrease as the treatment temperature increases, which is mainly attributed to the high porosity of quartz sandstone. The results obtained from stress–strain curve, failure mode, and AE characteristic also show that the failure of quartz-rich rock (i.e., quartz sandstone and granite) is more brittle when compared with that of calcite-rich rock (i.e., marble). However, the ductility is enhanced to some extent as the treatment temperature increases for all the three examined rocks. Due to high brittleness of quartz sandstone and granite, more AE activities can be detected during loading and the recorded AE activities mostly accumulate when the stress approaches the peak strength, which is quite different from the results of marble.


Sign in / Sign up

Export Citation Format

Share Document