scholarly journals Bar-cas12a, a Novel and Rapid Method for Plant Species Authentication: A Case of Phyllanthus Species

Author(s):  
Kittisak Buddhachat ◽  
Suphaporn Paenkaew ◽  
Nattaporn Sripai ◽  
Yash Munnalal Gupta ◽  
Waranee Pradit ◽  
...  

Abstract The rapid and accurate species diagnosis accelerates the performance to investigate various biology fields and its relevant, perhaps but morphology-based species taxonomy/identification hamper. DNA barcodes (Bar) has been employed extensively for plant species identification. Recently, CRISPR-cas system can be applied for diagnostic tool to detect pathogen’s DNA based on the collateral activity of cas12a or cas13. Here, we developed barcode-hyphenated with cas12a assay, “Bar-cas12a” for species authentication using Phyllanthus amarus as a model. The gRNAs were designed from trnL region, namely gRNA-A and gRNA-B. As a result, gRNA-A was highly specific to P. amarus amplified by RPA in contrast to gRNA-B even in contaminated condition. Apart from the large variation of gRNA-A binding in DNA target, cas12a- specific PAM’s gRNA-A as TTTN can be found only in P. amarus. PAM site may be recognized one of the potential regions for increasing specificity to authenticate species. In addition, the sensitivity of Bar-cas12a using both gRNAs gave the same detection limit at 0.8 fg and it was 1,000 times more sensitive compared to agarose gel electrophoresis. Overall, Bar-cas12a using trnL-designed gRNA offer a highly specific, sensitive, speed, and simple approach for plant species authentication and is likely to implement point-of-care testing.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kittisak Buddhachat ◽  
Suphaporn Paenkaew ◽  
Nattaporn Sripairoj ◽  
Yash Munnalal Gupta ◽  
Waranee Pradit ◽  
...  

AbstractRapid and accurate species diagnosis accelerates performance in numerous biological fields and associated areas. However, morphology-based species taxonomy/identification might hinder study and lead to ambiguous results. DNA barcodes (Bar) has been employed extensively for plant species identification. Recently, CRISPR-cas system can be applied for diagnostic tool to detect pathogen’s DNA based on the collateral activity of cas12a or cas13. Here, we developed barcode-coupled with cas12a assay, “Bar-cas12a” for species authentication using Phyllanthus amarus as a model. The gRNAs were designed from trnL region, namely gRNA-A and gRNA-B. As a result, gRNA-A was highly specific to P. amarus amplified by RPA in contrast to gRNA-B even in contaminated condition. Apart from the large variation of gRNA-A binding in DNA target, cas12a- specific PAM’s gRNA-A as TTTN can be found only in P. amarus. PAM site may be recognized one of the potential regions for increasing specificity to authenticate species. In addition, the sensitivity of Bar-cas12a using both gRNAs gave the same detection limit at 0.8 fg and it was 1,000 times more sensitive compared to agarose gel electrophoresis. This approach displayed the accuracy degree of 90% for species authentication. Overall, Bar-cas12a using trnL-designed gRNA offer a highly specific, sensitive, speed, and simple approach for plant species authentication. Therefore, the current method serves as a promising tool for species determination which is likely to be implemented for onsite testing.


1988 ◽  
Vol 60 (02) ◽  
pp. 133-136 ◽  
Author(s):  
R Schneppenheim ◽  
H Plendl ◽  
U Budde

SummaryA luminescence assay was adapted for detection of von Willebrand factor multimers subsequent to SDS-agarose gel electrophoresis and electroblotting onto nitrocellulose. The method is as fast as chromogenic detection methods and appears to be as sensitive as autoradiography without the disadvantages of the latter.


2020 ◽  
Vol 27 ◽  
Author(s):  
Yi Zhang

: Point-of-care (POC) testing decentralizes the diagnostic tests to the sites near the patient. Many POC tests rely microfluidic platforms for sample-to-answer analysis. Compared to other microfluidic systems, magnetic digital microfluidics demonstrate compelling advantages for POC diagnostics. In this review, we have examined the capability of magnetic digital microfluidics-based POC diagnostic platforms. More importantly, we have categorized POC settings into three classes based on “where is the point”, “who to care” and “how to test”, and evaluated the suitability of magnetic digital microfluidics in various POC settings. Furthermore, we have addressed other technical issues associated with POC testing such as controlled environment, sample-system interface, system integration and information connectivity. We hope this review would provide a guideline for the future development of magnetic digital microfluidics-based platforms for POC testing.


Sign in / Sign up

Export Citation Format

Share Document