scholarly journals Gelcast Zirconia Ceramics With High Strength and Simultaneously High Translucency for Dental Applications

Author(s):  
Jaroslav Kastyl ◽  
Zdenek Chlup ◽  
Vaclav Pouchly ◽  
Lu Song ◽  
Erik Scasnovic ◽  
...  

Abstract Translucent zirconia represents a favourite material for monolithic ceramic dental restorations. However, materials approaches employed so far to improve the translucency of zirconia ceramics are accompanied by a significant decline in strength. Thus, we aimed to develop dental 3Y-TZP ceramics that can provide excellent strength and, simultaneously, enhanced translucency. In this investigation, machinable tetragonal zirconia ceramics based on fine mesostructured zirconia particles stabilized with 3 mol% of yttria and prepared by the gelcasting processing method were developed. Properties of sintered samples were characterised, namely: shrinkage, density, structure, surface roughness, hardness, biaxial strength, and total forward transmittance. Zirconia ceramics with an average biaxial strength of 1184 MPa and a total forward transmittance of 46.7% for a 0.5 mm thick sample at a wavelength of 600 nm were obtained. These ceramics exhibited homogeneous structure with grains sizes up to 620 nm and purely tetragonal phase composition. The developed ceramics provided a favourable combination of high translucency comparable even with the mixed cubic/tetragonal structure of a common 4Y-TZP, and very high strength that is achievable only in the pure tetragonal 3Y-TZP.

2018 ◽  
Vol 44 (15) ◽  
pp. 18641-18649 ◽  
Author(s):  
Chuin Hao Chin ◽  
Andanastuti Muchtar ◽  
Che Husna Azhari ◽  
Masfueh Razali ◽  
Mohamed Aboras

2012 ◽  
Vol 86 ◽  
pp. 17-21 ◽  
Author(s):  
H. Sakai ◽  
Teruo Asaoka

Due to the merits of zirconia ceramics such as high strength, toughness, abrasion resistance, and chemical stability in vivo, yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) are currently used in the femoral head of hip prostheses. However, this material has a limited applications range because it is a bioinert material that does not interact with bone tissue and thus does not easily integrate directly in the bone. Therefore, we need to add different material’s layer which enables in vivo formation of bone-like apatite layer that exhibits bioactivity , composite compound bioactive ceramics, and facilitates interactions and integration in bone tissue. In addition, by developing a surface structure that enhances mechanical bonding, this material can be expected to be used as an alternative aggregate under load bearing conditions. In the present study, various method were carried out with the objective of controlling interactions between zirconia ceramics and the body such as structural design of the material surface, addition of bioactivity using reagents treatment, confirmation of formation of the apatite layer using immersion in simulated body fluid, wettability testing and develop structure with mechanical properties equal to bone strength.


2008 ◽  
Vol 57 ◽  
pp. 139-143 ◽  
Author(s):  
N. Koide ◽  
K. Suzuki ◽  
M. Tsuda ◽  
Teruo Asaoka

Due to the merits of zirconia ceramics such as high strength, toughness, and abrasion resistance, as well as chemical stability in vivo, yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) are currently used in the femoral head of hip prostheses. However, this material has a limited range of use because it is a bioinert material that does not interact with bone tissue and thus does not easily integrate directly with bone. Therefore, addition of a material surface that enables the in vivo formation of a bone-like apatite layer that exhibits bioactivity and facilitates interactions and integration with bone tissue is desired. In addition, by developing a surface structure that enhances mechanical bonding, this material can be expected to be used as an alternative aggregate under load bearing conditions. In the present study, structural design of the material surface, addition of bioactivity using reagents treatment, confirmation of formation of the apatite layer using immersion in simulated body fluid, mechanical assessment, and wettability testing were conducted with the objective of controlling interactions between zirconia ceramics and the body.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


1986 ◽  
Vol 47 (C1) ◽  
pp. C1-237-C1-241
Author(s):  
A. SMITH ◽  
B. CALES ◽  
J. F. BAUMARD

Alloy Digest ◽  
1998 ◽  
Vol 47 (7) ◽  

Abstract Alcoa 7075 alloy has very high strength and is used for highly stressed structural parts. The T7351 temper offers improved stress-corrosion cracking resistance. The alloy’s strength level equals or exceeds mild steels. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as machining and surface treatment. Filing Code: AL-350. Producer or source: ALCOA Wire, Rod & Bar Division.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
2002 ◽  
Vol 51 (11) ◽  

Abstract Allvac 13-8 has good fabricability and can be age hardened by a single treatment in the range 510-620 deg C (950-1150 deg F). Cold working prior to aging enhances the aging. This martensitic precipitation-hardening stainless steel has very good resistance to general corrosion and stress-corrosion cracking. It develops very high strength and exhibits good transverse ductility and toughness in heavy sections. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-866. Producer or source: Allvac Metals Company.


Sign in / Sign up

Export Citation Format

Share Document