The Inhibitory Effect of Three Essential Oils on Candida rugosa Lipase: In Vitro and In Silico Studies

2020 ◽  
Vol 10 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Talia Serseg ◽  
Khedidja Benarous ◽  
Mohamed Yousfi

Background: Essential oils have been used for centuries. EOs are gaining increasing interest because of their acceptance by consumers and their safe status. For the first time, the effect of essential oils on the inhibition of lipases has been investigated in this work. Objective: We aimed in this study to investigate in vitro the inhibitory effects of the three essential oils of most used spices: Peppermint (Mentha piperita L.), cinnamon (Cinnamomum zeylanicum L.) and Cloves (Syzygium aromaticum L. Merr. et Perry) against Candida rugose lipase. In silico studies using molecular docking have been achieved to study the inhibition mechanism of major compounds of EO: menthol, carvacrol, eugenol and cinnamylaldehyde toward CRL. Methods: The inhibitory effect of three essential oils were determined by candida rugosa enzyme and pNP-L as substrate using spectrophotometry. Autodock vina was used for molecular docking with 50 runs. Results: We have found that these essential oils have a strong inhibitory effect with IC50 values 1.09, 1.78 and 1.13 mg/ml compared with Orlistat 0.06 mg/ml. The results show competitive inhibition for the three major compounds Menthol, Carvacrol and Eugenol with uncompetitive inhibition for Cinnamaldehyde. Different repetition ratios of hydrogen bonds and hydrophobic interactions were observed. The saved interactions were with His449, Ser209, Gly123, Gly124 and Phe344 for all molecules. Conclusion: These observations support using and considering essential oils and their major compounds as good sources for design new drugs to treat candidiasis and other diseases related to Lipases.

Author(s):  
Nia Samira ◽  
Benarous Khedidja ◽  
Abdelalim Fatima Zahra ◽  
Chellali Khadidja Nour Elyakine ◽  
Yousfi Mohamed

Background: For the first time, the anti-inflammatory drug betamethasone is investigated for its inhibitory activity against lipase. Objective: This work aims to demonstrate the in vitro and in silico inhibitory effect of the anti-inflammatory drug betamethasone on the enzymatic activity of two lipases. Methods: In vitro study using p-nitrophenyllaurate as lipase substrate is used to determine inhibition potency. Molecular Docking is performed using the Autodock Vina for drug molecule and two enzymes Candida rugosa lipase and human pancreatic lipase. Results: Betamethasone represents a moderate inhibition effect with a value of IC50 of 0.36±0.01 mg/ml. Molecular docking allowed us to understand inhibitory – enzyme interactions and to confirm in vitro obtained results. Conclusion: These experiments showed that betamethasone can be used in the treatment of diseases related to lipase activity.


2020 ◽  
Vol 20 (1) ◽  
pp. 127-138
Author(s):  
Safia Gacemi ◽  
Khedidja Benarous ◽  
Santiago Imperial ◽  
Mohamed Yousfi

Background and Objective: The present paper aims to study the inhibition of Candida albicans growth as candidiasis treatment, using seeds of Lepidium sativum as source. Methods: In vitro assays were carried out on the antifungal activity of three kinds of extracts from L. sativum seeds against four strains of C. albicans, then testing the same phytochemicals on the inhibition of Lipase (LCR). A new in silico study was achieved using molecular docking, with Autodock vina program, to find binding affinity of two important and major lepidine alkaloids (lepidine E and B) towards the four enzymes secreted by C. albicans as target drugs, responsible of vitality and virulence of this yeast cells: Lipase, Serine/threonine phosphatase, Phosphomannose isomerase and Sterol 14-alpha demethylase (CYP51). Results: The results of the microdillution assay show that the hexanic and alkaloidal extracts have an antifungal activity with MICs: 2.25 mg/ml and 4.5mg/ml, respectively. However, Candida rugosa lipase assay gives a remarkable IC50 values for the hexanic extract (1.42± 0.04 mg/ml) followed by 1.7± 0.1 and 2.29 ± 0.09 mg/ml of ethyl acetate and alkaloidal extracts respectively. The molecular docking confirms a significant correlation between C. albicans growth and inhibition of crucial enzymes involved in the invasion mechanism and cellular metabolisms, for the first time there were an interesting and new positive results on binding modes of lepidine E and B on the four studied enzymes. Conclusion: Through this work, we propose Lepidine B & E as potent antifungal drugs.


Author(s):  
Saranya Sivaraj ◽  
Gomathi Kannayiram ◽  
Gayathri Dasararaju

Objective: This study is aimed to evaluate the anti-diabetic effect of sequentially extracted (hexane, dichloromethane, ethyl acetate, and ethanol) Myristica fragrans houtt (mace) through in vitro and in silico studies. Methods: The in vitro anti-diabetic effect of the sequentially extracted plant were evaluated for its alpha-amylase inhibitory activity and the potential binding was studied by in silico studies using Schrödinger Maestro.Results: All extracts showed dose dependent alpha-amylase inhibitory effect. At concentration 500 µg/ml, all the extracts showed more than 60% inhibition of the alpha-amylase enzyme and the highest inhibition (81.30%) at 500 µg/ml was observed in DCM extract of mace. Potential compounds were identified by in silico molecular docking studies of alpha-amylase with phytocomponents from DCM extract. Among the top three compounds from virtual screening, induced fit docking studies revealed 2,5-bis(3,4-dimethoxyphenyl)-3,4-dimethyloxolane possessed better binding affinity when compared with the drug metformin. Conclusion: The obtained in vitro and in silico results suggest that all extracts of Myristica fragrans can be used successfully for the management of diabetes mellitus.Keywords: Myristica fragrans, Mace, Sequential extraction, Alpha-amylase, Molecular docking.


2019 ◽  
Vol 15 (5) ◽  
pp. 445-455 ◽  
Author(s):  
Suraj N. Mali ◽  
Sudhir Sawant ◽  
Hemchandra K. Chaudhari ◽  
Mustapha C. Mandewale

Background: : Thiadiazole not only acts as “hydrogen binding domain” and “two-electron donor system” but also as constrained pharmacophore. Methods:: The maleate salt of 2-((2-hydroxy-3-((4-morpholino-1, 2,5-thiadiazol-3-yl) oxy) propyl) amino)- 2-methylpropan-1-ol (TML-Hydroxy)(4) has been synthesized. This methodology involves preparation of 4-morpholino-1, 2,5-thiadiazol-3-ol by hydroxylation of 4-(4-chloro-1, 2,5-thiadiazol-3-yl) morpholine followed by condensation with 2-(chloromethyl) oxirane to afford 4-(4-(oxiran-2-ylmethoxy)-1,2,5-thiadiazol- 3-yl) morpholine. Oxirane ring of this compound was opened by treating with 2-amino-2-methyl propan-1- ol to afford the target compound TML-Hydroxy. Structures of the synthesized compounds have been elucidated by NMR, MASS, FTIR spectroscopy. Results: : The DSC study clearly showed that the compound 4-maleate salt is crystalline in nature. In vitro antibacterial inhibition and little potential for DNA cleavage of the compound 4 were explored. We extended our study to explore the inhibition mechanism by conducting molecular docking, ADMET and molecular dynamics analysis by using Schrödinger. The molecular docking for compound 4 showed better interactions with target 3IVX with docking score of -8.508 kcal/mol with respect to standard ciprofloxacin (docking score= -3.879 kcal/mol). TML-Hydroxy was obtained in silico as non-carcinogenic and non-AMES toxic with good percent human oral absorption profile (69.639%). TML-Hydroxy showed the moderate inhibition against Mycobacteria tuberculosis with MIC 25.00 μg/mL as well as moderate inhibition against S. aureus, Bacillus sps, K. Pneumoniae and E. coli species. Conclusion: : In view of the importance of the 1,2,5-thiadiazole moiety involved, this study would pave the way for future development of more effective analogs for applications in medicinal field.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1380
Author(s):  
Johanis Wairata ◽  
Edwin Risky Sukandar ◽  
Arif Fadlan ◽  
Adi Setyo Purnomo ◽  
Muhammad Taher ◽  
...  

This study aimed to isolate xanthones from Garcinia forbesii and evaluated their activity in vitro and in silico. The isolated compounds were evaluated for their antioxidant activity by DPPH, ABTS and FRAP methods. The antidiabetic activity was performed against α-glucosidase and α-amylase enzymes. The antiplasmodial activity was evaluated using Plasmodium falciparum strain 3D7 sensitive to chloroquine. Molecular docking analysis on the human lysosomal acid-alpha-glucosidase enzyme (5NN8) and P. falciparum lactate dehydrogenase enzyme (1CET) and prediction of ADMET for the active compound, were also studied. For the first time, lichexanthone (1), subelliptenone H (2), 12b-hydroxy-des-D-garcigerrin A (3), garciniaxanthone B (4) and garcigerin A (5) were isolated from the CH2Cl2 extract of the stem bark of G. forbesii. Four xanthones (Compounds 2–5) showed strong antioxidant activity. In vitro α-glucosidase test showed that Compounds 2 and 5 were more active than the others, while Compound 4 was the strongest against α-amylase enzymes. In vitro antiplasmodial evaluation revealed that Compounds 2 and 3 showed inhibitory activity on P. falciparum. Molecular docking studies confirmed in vitro activity. ADMET predictions suggested that Compounds 1–5 were potential candidates for oral drugs. The isolated 2–5 can be used as promising phytotherapy in antidiabetic and antiplasmodial treatment.


Author(s):  
Saarra Maamri ◽  
Khedidja Benarous ◽  
Mohamed Yousfi

This study aimed to identify new drug molecules against Leishmania parasites, leishmaniasis's causal agent, using Pistacia atlantica leaves as source. The evaluation of the anti-leishmania potential against the promastigote form of Leishmania. infantum and Leishmania. major was performed. A new in silico study was accomplished using molecular docking, with Autodock vina program, to find the binding affinity of two important phytochemical compounds from this plant (Masticadienonic acid, 3-Methoxycarpachromene) towards the trypanothione reductase as target drugs, responsible for defence mechanism against oxidative stress and virulence of this parasites. Results: Several concentrations showed a significant decrease in cell viability (P<0.0001), with IC50 values of 0.3 mg/ mL for L. infantum and 0.12 mg/ mL L. major; The molecular docking confirms the significant relationship between Leishmania survival and the inhibition of this crucial enzyme. There were promising and new positive results on binding modes of selected ligands and the trypanothione reductase for the first time. Through this work, we propose 3-Methoxycarpachromene and Masticadienonic acid as anti Trypanosomatidae species drug.


2021 ◽  
Author(s):  
Po-Chun Chen ◽  
Bongani Sicelo Dlamini ◽  
Chiy-Rong Chen ◽  
Yueh-Hsiung Kuo ◽  
Wen-Ling Shih ◽  
...  

Abstract In the continuous search for α-glucosidase inhibitors, eleven phenolic compounds (1-11) were isolated from the root bark of Paeonia suffruticosa. Their α-glucosidase inhibitory activity and inhibition mechanism were investigated using an in vitro inhibition assay and molecular docking studies. Compounds 2, 5, 6, and 8-11 (IC50 between 290 and 431 µM) inhibited α-glucosidase more effectively than the reference compound acarbose (IC50=1463 ± 29.5 µM). Among them, compound 10 exhibited the highest α-glucosidase inhibitory effect with an IC50 value of 290.4 ± 9.6 µM. Compounds 2, 5, 9 10 and 11 were found to be competitive inhibitors, while compounds 6 and 8 were noncompetitive inhibitors of α-glucosidase. Computational analyses showed that the main binding forces between the compounds and the main residues were hydrogen bonds. The results indicated that these compounds had considerable α-glucosidase inhibitory activity.


2021 ◽  
Vol 17 ◽  
Author(s):  
Reguia Mahfoudi ◽  
Amar Djeridane ◽  
Djilali Tahri ◽  
Mohamed Yousfi

Background: Inhibition of α-amylase and α-glucosidase is considered as an important therapeutic target to manage type 2 diabetes mellitus (T2DM), reducing postprandial hyperglycemia (PPHG). Objective: The present work explored the antidiabetic activities of five artificial food colorings by α-amylase and α-glucosidase enzyme inhibition in vitro and in Silico. Methods: In this study, inhibition of α-amylase and α-glucosidase were evaluated. Further, the interaction between enzymes (α-amylase and α-glucosidase) and ligands (food colorings) was followed by QSAR and molecular docking studies. Results: The in vitro results obtained show that the blue patent (SIN131) exhibited more potent inhibition with IC50 values of 0.03± 0.01 mM and 0.014±0.001 mM against α-amylase and α-glucosidase inhibition respectively compared to acarbose. The QSAR study found a strong correlation between IC50 values with four molecular descriptors. This linear regression confirms that a strong polarity (Apol) and a low hydrophobia (ALogP) favor the inhibitory effect of these colorings toward both enzymes. Also, a negative role of the number of heavy atoms has been demonstrated in the phenomenon of inhibition of this enzyme. Finally, the descriptor εlumo (electronic affinity) plays a crucial role on the inhibitory power of these dyes toward both enzymes by electron transfer. The virtual screening of the inhibition of α-amylase and α-glucosidase by these colorings, using Molegro Virtual Docker (MVD), allowed us to obtain stable complexes with interaction energies resulting from the place of hydrogen bonds and several hydrophobic interactions. However, the sulfonate groups of these colorings can be the major factors in the inhibition of these enzymes. On the other hand, Rerank Score with the pose are perfectly correlated (R2> 0.76) to the inhibitory activity of these food colorings measured experimentally. Conclusion: The present study suggests that the Blue Patent V (SIN131) effectively act as α-amylase and α-glucosidase inhibitor leading to a reduction in starch hydrolysis and hence eventually to lowered glucose levels.


Sign in / Sign up

Export Citation Format

Share Document