scholarly journals Electron Paramagnetic Resonance, and Thermoluminiscence Mechanism In Radiation Shielding Cr2O3 - Ba(La)2SiO6 Glasses

Author(s):  
RK GUNTU

Abstract The research on Cr2O3 doped SiO2 glasses is well known for advanced dielectrics. However, there are many other valuable properties associated with Cr2O3 inclusive various glasses. In this view, the current research aimed to develop the radiation shielding, elastically rich, and the EPR based Cr2O3 doped Ba(La)2SiO6 glass resource. Electron paramagnetic resonance, radiation shielding, and elastic studies have been employed to investigate the advanced characteristics. Structural characterization suggests glassy behavior with the Cr2O3 undoped glass. Whereas the other involved with Cr2O3 mol% shown with the ceramic behavior. The glass transition phenomena and forming abilities are studied with the help of differential thermal analysis techniques. Elastic studies have been done with the limit on the glasses, which suggests the glasses are flexible for elastic use. The electron paramagnetic resonance reports suggest high order of dipole-dipole super-exchange interaction and rhombohedral distortion within the glasses. Furthermore, we have tested the glasses for radiation shielding properties. The values of mass attenuation coefficient, radiation protection efficiency, mean free path, and energy absorption build-up factor of the glasses are measured and compared with values obtained with the help of standard photon shielding and dosimetry software. The studies indicate that the glasses developed are capable of radiation shielding. Upon 50 kGy, γ - irradiation, the thermoluminescence properties of the glasses are reported. The results found to be interesting, and reveal the resource developed are thermoluminescent at low activation energies. Furthermore, we have tested, the glasses for radiation shielding properties. Moreover, to introduce the detailed correlation between electron paramagnetic resonance, and thermoluminescence phenomenon, we have annealed the glasses under 0 to 300 oC temperature and upon the 0 to 50 kGy, γ - irradiation dose level. The electron paramagnetic resonance and thermoluminescence properties obtained for the glasses are highly correlative.

1971 ◽  
Vol 49 (17) ◽  
pp. 2868-2873 ◽  
Author(s):  
R. S. Eachus ◽  
F. G. Herring

The Hg(I) center has been produced by γ-irradiation both in Hg(II) doped cadmium acetate trihydrate and pure mercuric acetate. Both electron paramagnetic resonance and optical spectroscopy have been used to identify this species. The results indicate that the Hg(I) ion is produced in a covalent environment.


2020 ◽  
Vol 105 (7) ◽  
pp. 1051-1059
Author(s):  
José R. Toledo ◽  
Raphaela de Oliveira ◽  
Lorena N. Dias ◽  
Mário L.C. Chaves ◽  
Joachim Karfunkel ◽  
...  

Abstract Montebrasite is a lithium aluminum phosphate mineral with the chemical formula LiAlPO4(Fx,OH1–x) and considered a rare gemstone material when exhibiting good crystallinity. In general, montebrasite is colorless, sometimes pale yellow or pale blue. Many minerals that do not have colors contain hydroxyl ions in their crystal structures and can develop color centers after ionization or particle irradiation, examples of which are topaz, quartz, and tourmaline. The color centers in these minerals are often related to O− hole centers, where the color is produced by bound small polarons inducing absorption bands in the near UV to the visible spectral range. In this work, colorless montebrasite specimens from Minas Gerais state, Brazil, were investigated by electron paramagnetic resonance (EPR) for radiation-induced defects and color centers. Although γ irradiation (up to a total dose of 1 MGy) did not visibly modify color, a 10 MeV electron irradiation (80 MGy) induced a pale greenish-blue color. Using EPR, O− hole centers were identified in both γ- or electron-irradiated montebrasite samples showing superhyperfine interactions with two nearly equivalent 27Al nuclei. In addition, two different Ti3+ electron centers were also observed. From the γ irradiation dose dependency and thermal stability experiments, it is concluded that production of O− hole centers is limited by simultaneous creation of Ti3+ electron centers located between two equivalent hydroxyl groups. In contrast, the concentration of O− hole centers can be strongly increased by high-dose electron irradiation independent of the type of Ti3+ electron centers. From detailed analysis of the EPR angular rotation patterns, microscopic models for the O− hole and Ti3+ electron centers are presented, as well as their role in the formation of color centers discussed and compared to other minerals.


2019 ◽  
Vol 107 (6) ◽  
pp. 517-522 ◽  
Author(s):  
M. Almatari

Abstract Radiations are widely used in hospitals and health services in radiotherapy and molecular imaging using x-ray and gamma radiation which considered as the most penetrating radiations and very difficult to shield. In this study, the radiation shielding properties of different zinc oxide (ZnO) concentrations of the (95-x)TeO2-5TiO2-xZnO (x=5, 10, 15, 20, 25, 30 and 40 mol%) glass system was investigated to be introduced as a new transparency effective shielding material. In order to study shielding properties, mass attenuation coefficients in the energy range of 0.015–15 MeV photon energies for the current glass system were calculated using ParShield software. Moreover, half value layer, mean free path and effective atomic number were evaluated using the obtained attenuation coefficient. The results indicated that if ZnO was added to the current glass system the mass attenuation coefficient will be decreased as well as effective atomic number values. The highest mass attenuation coefficient at all energies was found to be in TT5Z5 glass sample as well as the effective atomic number value.


2006 ◽  
Vol 61 (7-8) ◽  
pp. 413-417 ◽  
Author(s):  
Rahmi Köseoğlua ◽  
Fevzi Köksalb ◽  
Mehmet Akkurt ◽  
Emin Çiftçi

Natural sepiolite minerals and their γ -irradiated forms were investigated by electron paramagnetic resonance (EPR) at room temperature and at 113 K. The EPR signals in powders of natural sepiolite were observed due to clusters of Fe3+ ions. The paramagnetic centers produced by γ - irradiation of natural sepiolite minerals were attributed to the ĊH3 at room temperature and ṠO−2 and ṠO−3 radicals at 113 K. These centers were found to be perfectly observable above 20 mW microwave power. The g values of all paramagnetic centers have been measured and the A values of some of them have been reported. The results were consistent with the literature data for similar paramagnetic centers.


2021 ◽  
Author(s):  
Miraç KAMIŞLIOĞLU

Abstract In this investigation, the gamma photon shielding properties for the (Al:Si) and (Al + Na):Si dopped ISG glasses were investigated by using Photon Shielding and Dosimetry (Phy-X / PSD) software for the selected energy range. The obtained results showed that the highest MAC value belong to ISG-A00N glass. It was seen that the MAC values which were examined at all energies changed in harmony with WinXCom. Substituting an atomic fraction of (Al:Si) with (Al + Na):Si resulted in a reduction of the total atomic cross-section of the glass, which lowered the mass attenuation coefficient (MAC). In this study, computations were made for glasses with SiO2, Al2O3, B2O3, Na2O, CaO and ZrO2 content given with ISG-C, ISG-A00, ISG-A12, ISG-A22, ISG-A00N, ISG-A11N, ISG-A18N and ISG-A23N codes. MAC, LAC, HVL, TVL, Zeff, Neff, Ceff Zeq, EBF, EABF and FNRCS calculations were applied to assess the radiation protection parameters by using Phy-X/PSD software. In addition, MSP and PR values were calculated by using the SRIM code. In fact, each obtained parameter provides us very important information on radiation protection, and these methods are frequently used in the literature. ISG-A00N glasses were observed to have the highest attenuation coefficient. Thus, the MAC value gradually decreased as the Al, Na and Si contents increased. Likewise, the HVL, TVL and MFP values changed coherent with this. Moreover, Zeff and Neff values were seen in the ISG-A00N sample to take the maximum values to each other inversely. The most effective glass sample was seen as ISG-A00N glass at the mean free path penetration power of MSP and PR values. When all the results were evaluated, ISG-A00N glass which has the highest Si and Ca contents and density was found to be the glass with the best radiation shielding feature. It is also noteworthy that this glass does not contain any Al component. As the results of the investigation, it was found out that a very small doped of the Si increases the radiation shielding feature on the glass. It was seen that the ISG-A23N had the lowest ∑R value. The obtained results revealed that the ISG-A00N > ISG-A00 > ISG-C > ISG-A12 > ISG-A11N > ISG-A22 > ISG-A18N > ISG-A23N samples, in ascending order that attenuators for low energy radiations.


2003 ◽  
Vol 58 (5-6) ◽  
pp. 293-298 ◽  
Author(s):  
F. Köksal ◽  
R. Köseoğlu ◽  
E. Bașaran

Rhyolite from the “Yellow Stone of Nevșehir” and γ-irradiated trona from the Ankara Mine have been investigated by electron paramagnetic resonance at ambient temperature and at 113 K. Rhyolite was examined by X-ray powder diffraction and found to consist mainly of SiO2. Before γ-irradiation, the existing paramagnetic species in rhyolite were identified as ṖO42−, ĊH2OH, ĊO3−, ṠO2−, ĊO33−, and ĊO2- free radicals and Fe3+ at ambient temperature. At 113 K ṠO2- , ĊO33- , and ĊO2− radicals and Fe3+ were observed. The γ-irradiation produced neither new species nor detectable effects on these free radicals. The disappearance of some of the radicals at 113 K is attributed to the freezing of their motions. Before γ-irradiation, the trona mineral shows only Mn2+ lines, but after γ-irradiation it indicated the inducement of ĊO33− and ĊO2- radicals at ambient temperature, 113 K, in addition to the Mn2+ lines. The g and a values of the species were determined.


Sign in / Sign up

Export Citation Format

Share Document