scholarly journals Liquid-Liquid Phase Separation inside Giant Vesicles Drives Shape Deformations and Induces Lipid Membrane Phase Separation

Author(s):  
Wan-Chih Su ◽  
Douglas Gettel ◽  
Andrew Rowland ◽  
Christine Keating ◽  
Atul Parikh

Abstract An astounding variety of cellular contexts converge to the process of liquid-liquid phase separation for the creation of new functional levels of organization. But the kinetic pathways by which intracellular phase separation proceeds – typically in physically confined and macromolecularly crowded volumes of topologically closed cellular and intracellular compartments –remain incompletely understood. Here, we monitor the dynamics of liquid-liquid phase separation of mixtures of phase-separating polymers (i.e., polyethyleneglycol and dextran) inside all-synthetic, cell-sized giant unilamellar vesicles in real-time. We dynamically trigger phase separation by subjecting an initially homogeneous polymer solution inside vesicles to an abrupt osmotic quench. The latter removes water and elevates polymer concentrations in the phase-coexistence regime thereby initiating a segregative phase separation of the polymers. We find that the ensuing relaxation – en route to the new equilibrium – is non-trivially modulated by a dynamic interplay between the coarsening of the evolving droplet phase and the interactive membrane boundary. The early trajectory of droplet coarsening exhibit significant acceleration, but a competing process of membrane-droplet interactions – one in which the membrane boundary is preferentially wetted by one of the incipient phases – dynamically arrests the progression and deforms the membrane. As a result, a novel multi-bud morphology, reminiscent of cellular blebs, decorate the vesicle surface. Furthermore, when the vesicles are composed of phase-separating mixtures of common lipids, the three-dimensional liquid-liquid phase separation within the vesicular interior becomes coupled to the membrane’s compositional degrees of freedom producing microphase-separated membrane textures. This coupling of bulk and surface phase separation processes suggests a new physical principle by which liquid-liquid phase separation inside living cells might be dynamically regulated and materially communicated inside-out to the cellular boundaries.

2021 ◽  
Vol 433 (2) ◽  
pp. 166731
Author(s):  
Yanxian Lin ◽  
Yann Fichou ◽  
Andrew P. Longhini ◽  
Luana C. Llanes ◽  
Pengyi Yin ◽  
...  

Author(s):  
Yanting Xing ◽  
Aparna Nandakumar ◽  
Aleksandr Kakinen ◽  
Yunxiang Sun ◽  
Thomas P. Davis ◽  
...  

2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2074
Author(s):  
Sara Tabandeh ◽  
Cristina Elisabeth Lemus ◽  
Lorraine Leon

Electrostatic interactions, and specifically π-interactions play a significant role in the liquid-liquid phase separation of proteins and formation of membraneless organelles/or biological condensates. Sequence patterning of peptides allows creating protein-like structures and controlling the chemistry and interactions of the mimetic molecules. A library of oppositely charged polypeptides was designed and synthesized to investigate the role of π-interactions on phase separation and secondary structures of polyelectrolyte complexes. Phenylalanine was chosen as the π-containing residue and was used together with lysine or glutamic acid in the design of positively or negatively charged sequences. The effect of charge density and also the substitution of fluorine on the phenylalanine ring, known to disrupt π-interactions, were investigated. Characterization analysis using MALDI-TOF mass spectroscopy, H NMR, and circular dichroism (CD) confirmed the molecular structure and chiral pattern of peptide sequences. Despite an alternating sequence of chirality previously shown to promote liquid-liquid phase separation, complexes appeared as solid precipitates, suggesting strong interactions between the sequence pairs. The secondary structures of sequence pairs showed the formation of hydrogen-bonded structures with a β-sheet signal in FTIR spectroscopy. The presence of fluorine decreased hydrogen bonding due to its inhibitory effect on π-interactions. π-interactions resulted in enhanced stability of complexes against salt, and higher critical salt concentrations for complexes with more π-containing amino acids. Furthermore, UV-vis spectroscopy showed that sequences containing π-interactions and increased charge density encapsulated a small charged molecule with π-bonds with high efficiency. These findings highlight the interplay between ionic, hydrophobic, hydrogen bonding, and π-interactions in polyelectrolyte complex formation and enhance our understanding of phase separation phenomena in protein-like structures.


Sign in / Sign up

Export Citation Format

Share Document