scholarly journals Observation of liquid-liquid phase separation of ataxin-3 and quantitative evaluation of its concentration in a single droplet using Raman microscopy

2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...

2020 ◽  
Vol 295 (8) ◽  
pp. 2375-2384 ◽  
Author(s):  
Anastasia C. Murthy ◽  
Nicolas L. Fawzi

Liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a phenomenon that underlies membraneless compartmentalization of the cell. The underlying molecular interactions that underpin biomolecular LLPS have been of increased interest due to the importance of membraneless organelles in facilitating various biological processes and the disease association of several of the proteins that mediate LLPS. Proteins that are able to undergo LLPS often contain intrinsically disordered regions and remain dynamic in solution. Solution-state NMR spectroscopy has emerged as a leading structural technique to characterize protein LLPS due to the variety and specificity of information that can be obtained about intrinsically disordered sequences. This review discusses practical aspects of studying LLPS by NMR, summarizes recent work on the molecular aspects of LLPS of various protein systems, and discusses future opportunities for characterizing the molecular details of LLPS to modulate phase separation.


2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Nobuo N. Noda ◽  
Zheng Wang ◽  
Hong Zhang

Liquid–liquid phase separation (LLPS) compartmentalizes and concentrates biomacromolecules into distinct condensates. Liquid-like condensates can transition into gel and solid states, which are essential for fulfilling their different functions. LLPS plays important roles in multiple steps of autophagy, mediating the assembly of autophagosome formation sites, acting as an unconventional modulator of TORC1-mediated autophagy regulation, and triaging protein cargos for degradation. Gel-like, but not solid, protein condensates can trigger formation of surrounding autophagosomal membranes. Stress and pathological conditions cause aberrant phase separation and transition of condensates, which can evade surveillance by the autophagy machinery. Understanding the mechanisms underlying phase separation and transition will provide potential therapeutic targets for protein aggregation diseases.


2021 ◽  
Author(s):  
Tomoto Ura ◽  
Shunsuke Tomita ◽  
Kentaro Shiraki

Dynamic droplet formation via liquid-liquid phase separation (LLPS) is believed to be involved in the regulation of various biological processes. Here, a model LLPS system coupled with a sequential glycolytic...


2014 ◽  
Vol 11 (5) ◽  
pp. 1391-1402 ◽  
Author(s):  
Ying Wang ◽  
Ramil F. Latypov ◽  
Aleksey Lomakin ◽  
Julie A. Meyer ◽  
Bruce A. Kerwin ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Luo ◽  
Lei Qu ◽  
Feiran Gao ◽  
Jun Lin ◽  
Jian Liu ◽  
...  

Biomolecules specifically aggregate in the cytoplasm and nucleus, driving liquid-liquid phase separation (LLPS) formation and diverse biological processes. Extensive studies have focused on revealing multiple functional membraneless organelles in both the nucleus and cytoplasm. Condensation compositions of LLPS, such as proteins and RNAs affecting the formation of phase separation, have been gradually unveiled. LncRNAs possessing abundant second structures usually promote phase separation formation by providing architectural scaffolds for diverse RNAs and proteins interaction in both the nucleus and cytoplasm. Beyond scaffolds, lncRNAs may possess more diverse functions, such as functioning as enhancer RNAs or buffers. In this review, we summarized current studies on the function of phase separation and its related lncRNAs, mainly in the nucleus. This review will facilitate our understanding of the formation and function of phase separation and the role of lncRNAs in these processes and related biological activities. A deeper understanding of the formation and maintaining of phase separation will be beneficial for disease diagnosis and treatment.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Guillaume Laflamme ◽  
Karim Mekhail

AbstractLiquid-liquid phase separation (LLPS) has emerged as a central player in the assembly of membraneless compartments termed biomolecular condensates. These compartments are dynamic structures that can condense or dissolve under specific conditions to regulate molecular functions. Such properties allow biomolecular condensates to rapidly respond to changing endogenous or environmental conditions. Here, we review emerging roles for LLPS within the nuclear space, with a specific emphasis on genome organization, expression and repair. Our review highlights the emerging notion that biomolecular condensates regulate the sequential engagement of molecules in multistep biological processes.


2021 ◽  
Author(s):  
Soumik Ray ◽  
Debdeep Chatterjee ◽  
Semanti Mukherjee ◽  
Komal Patel ◽  
Jaladhar K Mahato ◽  
...  

Liquid-liquid phase separation (LLPS) and subsequent liquid-to-solid transition is implicated in membraneless organelles formation as well as disease associated protein aggregation. However, how liquid-to-solid transition is initiated inside a liquid droplet remains unclear. Here, using studies at single droplet resolution, we show that liquid-to-solid transition of α-synuclein (α-Syn) liquid droplets is associated with significant changes in the local microenvironment as well as secondary structure of the protein, which is prominently observed at the center of the liquid droplets. With the ageing of liquid droplets, the structured core at the center gradually expands and propagates over entire droplets. Further, during droplet fusion, smaller, homogeneous droplets progressively dissolve and supply proteins to the larger, heterogeneous droplets containing solid-like core at their center. The present study will significantly help to under-stand the physical mechanism of LLPS and liquid-to-solid transition in biological compartmentalization as well as in protein aggregation associated with human neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document