scholarly journals Facile Synthesis of Metal Doped Graphite Carbon Nitride for Photocatalytic Degradation of Tetracycline Under Visible Light Irradiation

Author(s):  
yin zhao ◽  
hong qin ◽  
Qianlan luo ◽  
ziwei wang ◽  
han wang ◽  
...  

Abstract Using semiconductor photocatalysts for antibiotic contaminants degradation under visible light has become a hot topic in recent years. Herein, a novel cadmium doped graphite phase carbon nitride (Cd/g-C3N4) photocatalyst was successfully constructed via 60 °C oil bath method to degrade tetracycline. Experimental and characterization results revealed that cadmium was well doped at g-C3N4 surface and exhibited high intercontact with g-C3N4. Meanwhile, Cd/g-C3N4 presented excellent electrical conductivity and inhibited the recombination of electron-hole pairs. The introduction of cadmium significantly improved the photocatalytic activity and the degradation efficiency of 10 Cd/g-C3N4 reached to 89.09%, which was exceeded 2.0 times than pure g-C3N4 (43.99%). Additionally, the quenching experiments and electron spin-resonance tests exhibited holes (h+), hydroxyl radicals (•OH) and superoxide radicals (•O2−) were dominated active species in TC degradation. Furthermore, the effects of various conditions on the reaction process, such as different pH, initial TC concentrations and catalyst dosage, were also researched. This work gives a reasonable point to synthesize high-efficiency and economic photocatalysts.

NANO ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. 1750129 ◽  
Author(s):  
Kuili Liu ◽  
Jinlin Li ◽  
Xu Yan ◽  
Weidong Shi

In this study, direct Z-scheme MnWO4/g-C3N4 photocatalyst was fabricated via facile hydrothermal method. Compared with pristine graphitic carbon nitride (g-C3N4) and manganous tungstate (MnWO4), the prepared MnWO4/g-C3N4 photocatalyst showed obviously enhanced photocatalytic activity for Rhodamine B (RhB) degradation under visible light irradiation. The MnWO4/g-C3N4 photocatalyst prepared with 10% MnWO4 (MC10%) showed the highest photocatalytic activity among all samples, which is about 2.3 and 12.7 times than that of pristine g-C3N4 and MnWO4, respectively. This enhancement is due to the strong light absorption and efficient electron–hole separation of direct Z-scheme MnWO4/g-C3N4 photocatalyst. Electron spin resonance (ESR) experiments and active species trapping experiments revealed that [Formula: see text]OH and [Formula: see text] are the main active species in the photocatalytic process. This work may be beneficial for designing MnWO4-based Z-scheme photocatalyst for application in environmental remediation.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 983 ◽  
Author(s):  
I. Neelakanta Reddy ◽  
N. Jayashree ◽  
V. Manjunath ◽  
Dongseob Kim ◽  
Jaesool Shim

Recently, the engineering of optical bandgaps and morphological properties of graphitic carbon nitride (g-C3N4) has attracted significant research attention for photoelectrodes and environmental remediation owing to its low-cost synthesis, availability of raw materials, and thermal physical–chemical stability. However, the photoelectrochemical activity of g-C3N4-based photoelectrodes is considerably poor due to their high electron–hole recombination rate, poor conductivity, low quantum efficiency, and active catalytic sites. Synthesized Ni metal-doped g-C3N4 nanostructures can improve the light absorption property and considerably increase the electron–hole separation and charge transfer kinetics, thereby initiating exceptionally enhanced photoelectrochemical activity under visible-light irradiation. In the present study, Ni dopant material was found to evince a significant effect on the structural, morphological, and optical properties of g-C3N4 nanostructures. The optical bandgap of the synthesized photoelectrodes was varied from 2.53 to 2.18 eV with increasing Ni dopant concentration. The optimized 0.4 mol% Ni-doped g-C3N4 photoelectrode showed a noticeably improved six-fold photocurrent density compared to pure g-C3N4. The significant improvement in photoanode performance is attributable to the synergistic effects of enriched light absorption, enhanced charge transfer kinetics, photoelectrode/aqueous electrolyte interface, and additional active catalytic sites for photoelectrochemical activity.


2021 ◽  
Vol 898 (1) ◽  
pp. 012025
Author(s):  
Wei’e Wang ◽  
Bohong Wu ◽  
Zhiyang Gao ◽  
Yuguang Lv

Abstract Photocatalysts are mainly divided into two categories: one is that they have good response to sunlight and visible light, such as BiVO4 and Fe2O3; One is that it has its own defects and can not make full use of the energy converted by visible light. In recent years, a class of oxides have attracted much attention because of their good performance of visible light photocatalytic degradation of pollutants. People also have a strong interest in the research of compound oxides in pollutant degradation. In order to further clarify the photocatalytic mechanism of GCB composite samples, different capture agents were added to determine the main active species in the photocatalytic process. Only through the method of modification, the synergistic effect can enhance its photocatalytic activity. 1% g-C3N4/BiVO4(GCB) sample, drhb = 90.4%, the photocatalytic activity did not change significantly after adding IPA. After adding EDTA and VC, the photocatalytic activity decreased, drhb = 32.6% and drhb = 51%. Therefore, the experiments show that h+ and ·O2- are active species of GCB catalytic system, O2 is more important for RHB degradation.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 788
Author(s):  
Beibei Zhang ◽  
Lu Zhang ◽  
Yulong Zhang ◽  
Chao Liu ◽  
Jiexiang Xia ◽  
...  

In this work, a simple chemical precipitation method was employed to prepare spherical-like Ag3PO4 material (IL-Ag3PO4) with exposed {111} facet in the presence of reactive ionic liquid 1-butyl-3-methylimidazole dihydrogen phosphate ([Omim]H2PO4). The crystal structure, microstructure, optical properties, and visible-light photocatalytic performance of as-prepared materials were studied in detail. The addition of ionic liquids played a crucial role in forming spherical-like morphology of IL-Ag3PO4 sample. Compared with traditional Ag3PO4 material, the intensity ratio of {222}/{200} facets in XRD pattern of IL-Ag3PO4 was significantly enhanced, indicating the main {111} facets exposed on the surface of IL-Ag3PO4 sample. The presence of exposed {111} facet was advantageous for facilitating the charge carrier transfer and separation. The light-harvesting capacity of IL-Ag3PO4 was larger than that of Ag3PO4. The photocatalytic activity of samples was evaluated by degrading rhodamine B (RhB) and p-chlorophenol (4-CP) under visible light. The photodegradation efficiencies of IL-Ag3PO4 were 1.94 and 2.45 times higher than that of Ag3PO4 for RhB and 4-CP removal, respectively, attributing to a synergy from the exposed {111} facet and enhanced photoabsorption. Based on active species capturing experiments, holes (h+), and superoxide radical (•O2−) were the main active species for visible-light-driven RhB photodegradation. This study will provide a promising prospect for designing and synthesizing ionic liquid-assisted photocatalysts with a high efficiency.


2018 ◽  
Vol 281 ◽  
pp. 848-853
Author(s):  
Ling Fang Qiu ◽  
Xiao Bin Qiu ◽  
Zhi Wei Zhou ◽  
Shu Wang Duo

Graphitic carbon nitride is a promising photocatalyst for environmental purification, but the photocatalytic performance is limited significantly due to its narrow visible-light adsorption and high photo-reduced electron-hole recombination rate. This work developed a novel way to overcome the two defects and obtained obvious effect. CoAPO-5 was used to broaden visible-light adsorption range by conducting g-C3N4/CoAPO-5 binary composite. In further, rGO was integrated into the binary system to form novel ternary composite. rGO performs as a electron mediator, which can inhibit photo-reduced electron-hole recombination efficiently. The samples were characterized by XRD, SEM, PL, IR and DRS. The photocatalytic performances for degrading RhB (10mg/L) indicated that g-C3N4/CoAPO-5/rGO have much higher activity than g-C3N4/CoAPO-5 because of synergistic effect. When the doping content of rGO in g-C3N4/CoAPO-5 was 0.5%, the degradation efficiency was improved by 14%.


2019 ◽  
Vol 43 (11) ◽  
pp. 4455-4462 ◽  
Author(s):  
Mohammed Ismael ◽  
Ying Wu ◽  
Michael Wark

The synthesized ZrO2/g-C3N4 composites exhibit superior performance in water splitting for hydrogen production due to the effective electron–hole separation at the composite interface.


RSC Advances ◽  
2015 ◽  
Vol 5 (112) ◽  
pp. 92033-92041 ◽  
Author(s):  
Xin Liu ◽  
Ailing Jin ◽  
Yushuai Jia ◽  
Junzhe Jiang ◽  
Na Hu ◽  
...  

An efficient composite photocatalyst fabricated by dispersing ultrafine Fe2O3 nanocrystals onto g-C3N4 nanosheets via a facile deposition-precipitation method shows significantly enhanced photocatalytic performance under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document