scholarly journals Spatial Distributions of 226Ra and 228Ra in the Indian and Southern Oceans in 2020 and Their Implications for Unique Currents

Author(s):  
Mutsuo Inoue ◽  
Shotaro Hanaki ◽  
Hiroaki Kameyama ◽  
Yuichiro Kumamoto ◽  
Seiya Nagao

Abstract We examined the spatial variations in 226Ra and 228Ra concentrations from the surface to a depth of 830 m in the Indian and Southern Oceans during December 2019–January 2020. Notably, 226Ra concentrations at the surface increased sharply from 30°S to 60°S along an ~55°E transect (1.4 to 2.9 mBq/L), exhibiting small vertical variations, while 228Ra became depleted, particularly in the Southern Ocean. These distributions indicated the ocean-scale northward lateral movements of 226Ra-rich and 228Ra-depleted currents originating from the Antarctic Circumpolar Current (ACC). Using 226Ra concentrations, the fractions of the ACC at depths of 0–800 m were estimated to decrease from 0.95 to 0.14 from 60°S to 30°S through 0.56 at 43°S. The fractions in the subantarctic area the western Indian Ocean were higher than those previously reported from the eastern, indicating the preferential transport of the ACC. The fractions obtained were approximately equivalent to those in the western Indian section in the 1970s. This could be attributed to the minimal effects of the southward shift of the polar front due to global warming over the last 40 y, implying no notable changes in soluble material transport systems from the Southern Ocean to southern Indian Ocean.

2013 ◽  
Vol 26 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Morgan L. Commins ◽  
Isabelle Ansorge ◽  
Peter G. Ryan

AbstractOceanic fronts are important foraging areas for many top predators, but they also define biogeographical boundaries to animals in the Southern Ocean and play a role in structuring seabird assemblages. Understanding the factors driving patterns in the spatial and temporal distribution of seabirds is important to infer the likely impact of a changing climate. Latitudinal transects south of Africa in two summers indicate that fronts and sea ice extent play key roles in determining seabird assemblages. We observed 37 seabird taxa and found five seabird assemblages. The Subtropical Convergence and pack ice-edge form the strongest biogeographical boundaries, whereas the Sub-Antarctic Front and Antarctic Polar Front are less well defined. As summer progresses, the Southern Antarctic Circumpolar Current Front (the Antarctic Divergence or southern boundary of the Antarctic Circumpolar Current) becomes important, when a distinct seabird assemblage forms north of the retreating sea ice following an influx of great shearwatersPuffinus gravis(O'Reilly), blue petrelsHalobaena caerulea(Gmelin), Kerguelen petrelsLugensa brevirostris(Lesson) and southern fulmarsFulmarus glacialoides(Smith). Seabird assemblages show strong seasonality and are predictable between years. They are structured primarily by latitudinal gradients and secondarily by seasonal variation in sea-surface temperature and ice cover within their latitudinal habitat zones.


Ocean Science ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 533-547 ◽  
Author(s):  
F. Fripiat ◽  
A.-J. Cavagna ◽  
F. Dehairs ◽  
S. Speich ◽  
L. André ◽  
...  

Abstract. Silicon isotopic signatures (δ30Si) of water column silicic acid (Si(OH)4) were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone) down to 57° S (northern Weddell Gyre). This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC). δ30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW), the Antarctic Intermediate Water (AAIW), and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the δ30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW δ30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the δ30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers. Through the use of δ30Si constraints, net biogenic silica production (representative of annual export), at the Greenwich Meridian is estimated to be 5.2 ± 1.3 and 1.1 ± 0.3 mol Si m−2 for the Antarctic Zone and Polar Front Zone, respectively. This is in good agreement with previous estimations. Furthermore, summertime Si-supply into the mixed layer of both zones, via vertical mixing, is estimated to be 1.6 ± 0.4 and 0.1 ± 0.5 mol Si m−2, respectively.


2019 ◽  
Vol 49 (12) ◽  
pp. 3221-3244 ◽  
Author(s):  
Ryan D. Patmore ◽  
Paul R. Holland ◽  
David R. Munday ◽  
Alberto C. Naveira Garabato ◽  
David P. Stevens ◽  
...  

AbstractIn the Southern Ocean the Antarctic Circumpolar Current is significantly steered by large topographic features, and subpolar gyres form in their lee. The geometry of topographic features in the Southern Ocean is highly variable, but the influence of this variation on the large-scale flow is poorly understood. Using idealized barotropic simulations of a zonal channel with a meridional ridge, it is found that the ridge geometry is important for determining the net zonal volume transport. A relationship is observed between ridge width and volume transport that is determined by the form stress generated by the ridge. Gyre formation is also highly reliant on the ridge geometry. A steep ridge allows gyres to form within regions of unblocked geostrophic (f/H) contours, with an increase in gyre strength as the ridge width is reduced. These relationships among ridge width, gyre strength, and net zonal volume transport emerge to simultaneously satisfy the conservation of momentum and vorticity.


2018 ◽  
Vol 15 (6) ◽  
pp. 1843-1862 ◽  
Author(s):  
Andrés S. Rigual Hernández ◽  
José A. Flores ◽  
Francisco J. Sierro ◽  
Miguel A. Fuertes ◽  
Lluïsa Cros ◽  
...  

Abstract. The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001–2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001–2002; (2) coccoliths captured by the traps experienced weight and length reduction during summer (December–February); (3) the estimated annual coccolith weight of E. huxleyi at both sediment traps (2.11 ± 0.96 and 2.13 ± 0.91 pg at 2000 and 3700 m) was consistent with previous studies for morphotype B/C in other Southern Ocean settings (Scotia Sea and Patagonian shelf); and (4) coccolithophores accounted for approximately 2–5 % of the annual deep-ocean CaCO3 flux. Our results are the first annual record of coccolithophore abundance, composition and degree of calcification in the Antarctic zone. They provide a baseline against which to monitor coccolithophore responses to changes in the environmental conditions expected for this region in coming decades.


2015 ◽  
Vol 45 (5) ◽  
pp. 1205-1223 ◽  
Author(s):  
Christopher J. Roach ◽  
Helen E. Phillips ◽  
Nathaniel L. Bindoff ◽  
Stephen R. Rintoul

AbstractThis study presents a unique array of velocity profiles from Electromagnetic Autonomous Profiling Explorer (EM-APEX) profiling floats in the Antarctic Circumpolar Current (ACC) north of Kerguelen. The authors use these profiles to examine the nature of Ekman spirals, formed by the action of the wind on the ocean’s surface, in light of Ekman’s classical linear theory and more recent enhancements. Vertical decay scales of the Ekman spirals were estimated independently from current amplitude and rotation. Assuming a vertically uniform geostrophic current, decay scales from the Ekman current heading were twice as large as those from the current speed decay, indicating a compressed spiral, consistent with prior observations and violating the classical theory. However, if geostrophic shear is accurately removed, the observed Ekman spiral is as predicted by classical theory and decay scales estimated from amplitude decay and rotation converge toward a common value. No statistically robust relationship is found between stratification and Ekman decay scales. The results indicate that compressed spirals observed in the Southern Ocean arise from aliasing of depth-varying geostrophic currents into the Ekman spiral, as opposed to surface trapping of Ekman currents associated with stratification, and extends the geographical area of similar results from Drake Passage (Polton et al. 2013). Accounting for this effect, the authors find that constant viscosity Ekman models offer a reasonable description of momentum mixing into the upper ocean in the ACC north of Kerguelen. These results demonstrate the effectiveness of a new method and provide additional evidence that the same processes are active for the entire Southern Ocean.


2011 ◽  
Vol 28 (4) ◽  
pp. 548-568 ◽  
Author(s):  
A. J. S. Meijers ◽  
N. L. Bindoff ◽  
S. R. Rintoul

Abstract A gravest empirical mode (GEM) projection of temperature and salinity fields over the circumpolar Southern Ocean is presented and is used in combination with satellite altimetry to produce gridded, full-depth, time-evolving temperature, salinity, and velocity fields. Optimal interpolation of historical hydrography, including Argo floats, is used to produce GEM projections of the circumpolar temperature and salinity fields. Parameterizing these fields by dynamic height allows the use of altimetric SSH values from 1992–2006 to create synoptic temperature and salinity fields at weekly intervals on a ⅓° grid at 36 depth levels. The satellite-derived temperature and salinity fields generally capture over 90% of the property variance below the thermocline, with RMS residuals of 1.16°C and 0.132 in salinity at the surface, decreasing to less than 0.45°C and 0.05 below 500 dbar. The combination of altimetry with the GEM fields allows the resolution of the subsurface structure of the filamentary fronts and eddy features. Velocity fields derived from the time-evolving temperature and salinity fields reproduce the Antarctic Circumpolar Current (ACC) velocity structure well, and are strongly correlated (r > 0.7) with in situ measurements from current meters and drifters, with RMS velocity residuals of 4.8–14.8 cm−1 in the Subantarctic Front.


Sign in / Sign up

Export Citation Format

Share Document