scholarly journals Molecular and Biochemical Characterization of Two 4-Coumarate: Coa Ligase Genes in Tea Plant (Camellia Sinensis)

Author(s):  
Mingzhuo Li ◽  
Lili Guo ◽  
Yeru Wang ◽  
Yanzhi Li ◽  
Xiaolan Jiang ◽  
...  

Abstract Tea is rich in flavonoids benefiting human health. Lignin is essential for tea plant growth. Both flavonoids and lignin defend plants from stresses. The biosynthesis of lignin and flavonoids shares a key intermediate, p-coumaroyl-CoA, which is formed from p-coumaric acid catalyzed by p-coumaric acid: CoA ligase (4CL). Herein, we reported two 4CL paralogs from tea plant, Cs4CL1 and Cs4CL2, which were a member of class I and II, respectively. Cs4CL1 was mainly expressed in roots and stems, while Cs4CL2 was mainly expressed in leaves. The promoter of Cs4CL1 had AC, light and stress-inducible (LSI), and meristem-specific elements, while that of Cs4CL2 had AC and LSI elements only. Moreover, the promoter of Cs4CL1 had two more stress-inducible elements than Cs4CL2 had and the two promoters had six different light-inducible elements. These features suggested their differences in their responses to environmental conditions. Three stress treatments indicated that the expression of Cs4CL1 was sensitive to mechanical wounding, while the expression of Cs4CL2 was UV-B-inducible. Enzymatic assay showed that both recombinant Cs4CL1 and Cs4CL2 transformed p-coumaric acid, ferulic acid and caffeic acid to their corresponding CoA ethers. Kinetic analysis indicated that the recombinant Cs4CL1 preferred to catalyze caffeic acid, while the recombinant Cs4CL2 favored to catalyze p-coumaric acid. The overexpression of both Cs4CL1 and Cs4CL2 increased the levels of chlorogenic acid and total lignin in transgenic tobacco seedlings. In addition, the overexpression of Cs4CL2 increased the levels of three flavonoid compounds. These findings indicate the differences of Cs4CL1 and Cs4CL2 in the phenylpropanoid metabolism.

2009 ◽  
Vol 47 (4) ◽  
pp. 322-326 ◽  
Author(s):  
Jian-Min Zhou ◽  
Yong Weon Seo ◽  
Ragai K. Ibrahim

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xianting Wu ◽  
Jiajie Wu ◽  
Yangfan Luo ◽  
Jennifer Bragg ◽  
Olin Anderson ◽  
...  

Caffeic acid o-methyltransferase (COMT) is one of the important enzymes controlling lignin monomer production in plant cell wall synthesis. Analysis of the genome sequence of the new grass model Brachypodium distachyon identified four COMT gene homologs, designated as BdCOMT1, BdCOMT2, BdCOMT3, and BdCOMT4. Phylogenetic analysis suggested that they belong to the COMT gene family, whereas syntenic analysis through comparisons with rice and sorghum revealed that BdCOMT4 on Chromosome 3 is the orthologous copy of the COMT genes well characterized in other grass species. The other three COMT genes are unique to Brachypodium since orthologous copies are not found in the collinear regions of rice and sorghum genomes. Expression studies indicated that all four Brachypodium COMT genes are transcribed but with distinct patterns of tissue specificity. Full-length cDNAs were cloned in frame into the pQE-T7 expression vector for the purification of recombinant Brachypodium COMT proteins. Biochemical characterization of enzyme activity and substrate specificity showed that BdCOMT4 has significant effect on a broad range of substrates with the highest preference for caffeic acid. The other three COMTs had low or no effect on these substrates, suggesting that a diversified evolution occurred on these duplicate genes that not only impacted their pattern of expression, but also altered their biochemical properties.


2021 ◽  
Vol 4 (2) ◽  
pp. 183
Author(s):  
Tejashree Chikane ◽  
Sonal Patil ◽  
Pravin Bhushette ◽  
Sachin Kalidas Sonawane

Amaranthus Tricolor L. (red amaranth) and Amaranthus Viridis (Green amaranth) are Amaranthaceae members, widely cultivated in Asia and consumed as a leafy vegetable in many parts of the world. This study deal with the nutritional and functional, and biochemical characterization of A. Tricolor and A. viridis . Single-factor experiments and Box Behnken Design (BBD) were used to optimize the extraction process for the phenolic compound from A. Tricolor and A. viridis . The BBD shows that 11.87mg/g phenolic extract of A. Tricolor produced at the optimal condition of solid to water ratio (1:15), temperature (30°C), and time (15 min). Similarly, A. viridis  isolated 18.36mg/g of phenolics at optimal condition solid to liquid ratio (1:30), temperature (30°C), and time (60 min). The radical scavenging activity of A. Tricolor and A. viridis  shows 63.52% and 19.27%, respectively, by the DPPH method. The bioactive compounds 3,4,5-Trihydroxystilbene and caffeic acid were found in A. Tricolor, and in A. viridis it showed caffeic acid, which was identified using LC-MS/MS.


Author(s):  
J. H. Resau ◽  
N. Howell ◽  
S. H. Chang

Spinach grown in Texas developed “yellow spotting” on the peripheral portions of the leaves. The exact cause of the discoloration could not be determined as there was no evidence of viral or parasitic infestation of the plants and biochemical characterization of the plants did not indicate any significant differences between the yellow and green leaf portions of the spinach. The present study was undertaken using electron microscopy (EM) to determine if a micro-nutrient deficiency was the cause for the discoloration.Green leaf spinach was collected from the field and sent by express mail to the EM laboratory. The yellow and equivalent green portions of the leaves were isolated and dried in a Denton evaporator at 10-5 Torr for 24 hrs. The leaf specimens were then examined using a JEOL 100 CX analytical microscope. TEM specimens were prepared according to the methods of Trump et al.


2014 ◽  
Vol 3 (3) ◽  
pp. 218-225
Author(s):  
R. G. Somkuwar ◽  
M. A. Bhange ◽  
A. K. Upadhyay ◽  
S. D. Ramteke

SauvignonBlanc wine grape was characterized for their various morphological, physiological and biochemical parameters grafted on different rootstocks. Significant differences were recorded for all the parameters studied. The studies on vegetative parameters revealed that the rootstock influences the vegetative growth thereby increasing the photosynthetic activities of a vine. The highest photosynthesis rate was recorded in 140-Ru grafted vine followed by Fercal whereas the lowest in Salt Creek rootstock grafted vines.The rootstock influenced the changes in biochemical constituents in the grafted vine thereby helping the plant to store enough food material. Significant differences were recorded for total carbohydrates, proteins, total phenols and reducing sugar. The vines grafted on1103-Pshowed highest carbohydrates and starch followed by 140-Ru,while the least amount of carbohydrates were recorded in 110-R and Salt Creek grafted vines respectively.Among the different rootstock graft combinations, Fercal showed highest amount of reducing sugar, proteins and phenols, followed by 1103-P and SO4, however, the lowest amount of reducing sugar, proteins and phenols were recorded with 110-R grafted vines.The vines grafted on different rootstocks showed changes in nutrient uptake. Considering this, the physico-biochemical characterization of grafted vine may help to identify particularrootstocks combination that could influence a desired trait in commercial wine grape varieties after grafting.


Sign in / Sign up

Export Citation Format

Share Document