scholarly journals Modeling The Post-Failure And Run-Off For a Translational Landslide In Taiwan By Material Point Method

Author(s):  
Fu-Hsuan Yeh ◽  
Yi-Chun Lai ◽  
Louis Ge ◽  
Shih-Hao Cheng

Abstract The material point method (MPM) is an extended finite element method that can be used to simulate large deformation scenarios. A massive translational landslide in Taiwan was adopted to validate the numerical technique as thorough investigations, including the digital terrain models (DTMs), laboratory experiments, and numerical analyses, were available in a forensic report. The MPM code Anura3D was used to mimic the landslide’s kinematics, post-failure, and run-off process. An unstable sandstone/shale interlayer was found to lead the slope sliding; therefore, the before-and-after DTMs from the report mentioned above were used to examine the run-off distance and deposition to determine the best fit of reduced material properties for this layer. The sliding paths, displacements, velocities of the sliding can be evaluated by dividing the material points into several groups to differentiate the kinematic among them. Meanwhile, the simulations were compared with different numerical methods. The landslide duration and possible maximum safety distance were also assessed. This study has demonstrated that the MPM can analyze the large deformation, post-failure, and run-off distance of landslides. The critical timing of a slope failure is possible to be an essential index on national spatial planning for future disaster reduction.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Thanh Son Nguyen ◽  
Kuo-Hsin Yang ◽  
Chia-Chun Ho ◽  
Feng-Chi Huang

Although the mechanisms of slope failure caused by rising groundwater have been widely investigated, the kinematic behavior of landslides in the postfailure stage, which contains essential information for hazard mitigation and risk assessment, has not yet been fully studied. Thus, in this study, a series of numerical simulations using the material point method (MPM) were conducted to analyze the kinematic behavior and soil movement of shallow landslides (infinite slope problems). First, the proposed MPM formulation was validated in a full-scale landslide flume test. The simulated results of final slope profile, runout distance, deposit height, shear band development, slope displacement, and velocity accorded with the experimental results, suggesting that the MPM can quantitatively simulate large deformations. A parametric study of shallow slopes with various hydrological conditions and soil hydraulic and soil mechanical parameters was then performed to assess the influence of the aforementioned factors on landslide kinematics. The simulation results indicated that mechanical behavior at the slope toe is complex; the multiple plastic shear bands generated at the slope toe were due to a combination of shearing and compression. The deposition profile of the slopes was significantly influenced by all input parameters. Among the aforementioned parameters, soil cohesion, location of the groundwater table, and saturated soil permeability most greatly affected runout distance in the sensitivity assessment. Soil friction angle had a minor influence on the kinematic behavior of the slope.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1446 ◽  
Author(s):  
Troncone ◽  
Conte ◽  
Pugliese

Traditional numerical methods, such as the finite element method or the finite difference method, are generally used to analyze the slope response in the pre-failure and failure stages. The post-failure phase is often ignored due to the unsuitability of these methods for dealing with problems involving large deformations. However, an adequate analysis of this latter stage and a reliable prediction of the landslide kinematics after failure are very useful for minimizing the risk of catastrophic damage. This is generally the case of the landslides triggered by an excess in pore water pressure, which are often characterized by high velocity and long run-out distance. In the present paper, the deformation processes occurring in an ideal slope owing to an increase in pore water pressure are analyzed using the material point method (MPM) that is a numerical technique capable of overcoming the limitations of the above-mentioned traditional methods. In particular, this study is aimed to investigate the influence of the main involved parameters on the development of a slip surface within the slope, and on the kinematics of the consequent landslide. The obtained results show that, among these parameters, the excess water pressure exerts the major influence on the slope response. A simple equation is also proposed for a preliminary evaluation of the run-out distance of the displaced soil mass.


Sign in / Sign up

Export Citation Format

Share Document