scholarly journals Analysis of the Slope Response to an Increase in Pore Water Pressure Using the Material Point Method

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1446 ◽  
Author(s):  
Troncone ◽  
Conte ◽  
Pugliese

Traditional numerical methods, such as the finite element method or the finite difference method, are generally used to analyze the slope response in the pre-failure and failure stages. The post-failure phase is often ignored due to the unsuitability of these methods for dealing with problems involving large deformations. However, an adequate analysis of this latter stage and a reliable prediction of the landslide kinematics after failure are very useful for minimizing the risk of catastrophic damage. This is generally the case of the landslides triggered by an excess in pore water pressure, which are often characterized by high velocity and long run-out distance. In the present paper, the deformation processes occurring in an ideal slope owing to an increase in pore water pressure are analyzed using the material point method (MPM) that is a numerical technique capable of overcoming the limitations of the above-mentioned traditional methods. In particular, this study is aimed to investigate the influence of the main involved parameters on the development of a slip surface within the slope, and on the kinematics of the consequent landslide. The obtained results show that, among these parameters, the excess water pressure exerts the major influence on the slope response. A simple equation is also proposed for a preliminary evaluation of the run-out distance of the displaced soil mass.

2021 ◽  
Vol 9 ◽  
Author(s):  
Wei-Lin Lee ◽  
Mario Martinelli ◽  
Chjeng-Lun Shieh

The kinematic behavior of rainfall-induced landslides from the pre-failure stage to post-failure stage contains important information for risk assessment and management. Because a complex relationship exists between rainfall conditions, pore water pressure, soil strength, and movement rates, a numerical model is the most efficient way to investigate the behavior of rainfall-induced landslides. In this study, the material point method (MPM) is used to investigate the dynamic behavior of landslides. First, the rainfall boundary conditions are extensively verified by comparing 1-D consolidation tests against other numerical solutions. Then, a numerical model is used to simulate a lab-scale rainfall-induced slope failure. A parametric study shows the influence of rainfall intensity on pore water pressure development, failure triggering time, surface displacement, and velocity. The use of the MPM provides a clear understanding in the failure mechanism and post-failure behavior of a rainfall-induced landslide.


2005 ◽  
Vol 78 (1-2) ◽  
pp. 105-118 ◽  
Author(s):  
T.M. Tsao ◽  
M.K. Wang ◽  
M.C. Chen ◽  
Y. Takeuchi ◽  
S. Matsuura ◽  
...  

1993 ◽  
Vol 30 (3) ◽  
pp. 464-475 ◽  
Author(s):  
K.D. Eigenbrod

Slow, shallow ground movements in a slope near Yellowknife caused excessive tilting of timber piles that supported an engineering structure. To avoid damage to the structure, the pile foundations had to be replaced by rigid concrete piers that were designed to resist the forces of the moving soil mass. Downhill movements were rather slow and, during an initial inspection, were indicated only by soil that was pushed up against a series of piles on their uphill sides, while gaps had formed on their downhill sides. No open cracks or bulging was observed on the slope. A stability analysis indicated that the slope was not in a state of limit equilibrium. To obtain a better understanding of the creep movements in the slope and their effect on the rigid concrete piers, extensive instrumentation was carried out after the construction of the piers. This included slope indicators, piezometers, thermistors, and total-pressure cells against one of the concrete piers. In addition, a triaxial testing program was undertaken in which the effect of cyclic pore-water pressure changes on the long-term deformations of the shallow clay layer was investigated. From the data collected in the field and laboratory, it could be concluded that (i) tilting of the original timber piles was caused by downslope movements related to cyclic pore-water increases; (ii) the lateral soil movements increased almost linearly with depth from 2 m below the ground surface, with no indication of a slip surface; and (iii) the pressures exerted by the moving soil mass against the rigid concrete piers within the soil mass were equal to the passive resistance activated within the moving soil mass. Key words : soil creep, slope movements, soil pressures, pore-water pressures, freezing pressures, permafrost, cyclic loading.


Landslides ◽  
1999 ◽  
Vol 36 (1) ◽  
pp. 35-42_1
Author(s):  
Tsung-Ming TSAO ◽  
Takehiko OHTA ◽  
Yoshitsugu TAKEUCHI ◽  
Sumio MATSUURA ◽  
Hirotaka OCHIAI

2014 ◽  
Vol 553 ◽  
pp. 501-506 ◽  
Author(s):  
Wojciech Tomasz Sołowski ◽  
Scott William Sloan

The material point method is a novel numerical technique which is especially well-suited to solving problems involving large or extreme deformations. This paper shows the results of the modelling of flow of granular material in inclined channels. During the calculations the granular material is approximated by a Mohr-Coulomb constitutive model. The computed flow is subsequently compared to experimental results published in the literature.


Landslides ◽  
1998 ◽  
Vol 35 (3) ◽  
pp. 24-33_1
Author(s):  
Tsung-Ming TSAO ◽  
Takehiko OHTA ◽  
Yoshitsugu TAKEUCHI ◽  
Sumio MATSUURA ◽  
Hirotaka OCHIAI

2021 ◽  
Vol 9 ◽  
Author(s):  
Taiqiang Yang ◽  
Yong Li ◽  
Xiaojun Guo ◽  
Jun Zhang ◽  
Yu Jiang ◽  
...  

Pore water pressure has been recognized as an important factor to enhance the mobility of debris flow moving in channel of very gentle slope. The creation and dissipation of pore water pressure are associated with interaction between grains. This study proposes a physical model for the pressure on mobility of flows with different granular configurations: the flow with overlying coarse-grained layer (i.e., inverse grading) and the flow with fully-mixed grains. The flow velocity is derived by the effective stress principle and the relationship between acceleration and pore water pressure is analyzed under different conditions. The results show that a high excess pore water pressure leads to high velocity of flow, and the pressure increases during the movement; and acceleration increases with time and flow depth under given pore water pressure. Moreover, compared with the flow with mixed grains, the flow with overlying coarse-grained layer is more effective to promote the excess pore water pressure and the liquefaction slip surface. Therefore, the internal drag reduction due to pore water pressure produces an acceleration effect on the flow.


Sign in / Sign up

Export Citation Format

Share Document