scholarly journals Distribution of Extreme Rainfall Events and Their Environmental Controls in The West African Sahel

Author(s):  
Edward K. Vizy ◽  
Kerry H. Cook

Abstract West African Sahel extreme rainfall events are impactful when strong mesoscale convective systems (MCSs) produce large amounts of rainfall in short periods. NASA IMERG rainfall estimates and the ERA5 reanalysis are examined to understand where the top 100 highest 12Z – 12Z 24-h rainfall totals and MCS storm genesis occur, and to assess the relative importance of environmental conditions in their generation including the influence of atmospheric moisture and vertical wind shear. Most of the top 100 events are located south of 14°N. Events cluster over three regions, namely, Mali, Burkina Faso, and northern Nigeria. The associated MCSs are typically not locally generated, forming instead at distances greater than 100 km upstream. Composites reveal that a significant increase in atmospheric moisture content occurs prior to development, but there is no evidence of significant changes in the 600 – 925 hPa vertical wind shear. This indicates that vertical wind shear is less influential in extreme storm development than atmospheric moisture preconditioning. The top 10 events are further evaluated. A change in these storms’ direction and speed near the maximum rainfall location is common, suggesting the MCSs are reorganizing around peak rainfall intensity time. Three atmospheric conditions are associated with these events. They are (1) moisture preconditioning of the atmosphere, (2) interaction of the storm in the wake of a region of anticyclonic flow, and (3) interaction of the storm in the wake of a region of anticyclonic flow and the Sahel/tropical dryline boundary.

Data in Brief ◽  
2018 ◽  
Vol 20 ◽  
pp. 1274-1278 ◽  
Author(s):  
Seyni Salack ◽  
Inoussa Abdou Saley ◽  
Jan Bliefernicht

2015 ◽  
Vol 15 (6) ◽  
pp. 8479-8523
Author(s):  
C.-C. Wang ◽  
H.-C. Kuo ◽  
R. H. Johnson ◽  
C.-Y. Lee ◽  
S.-Y. Huang ◽  
...  

Abstract. This paper investigates the formation and evolution of deep convection inside the east–west oriented rainbands associated with a low-level jet (LLJ) in Typhoon Morakot (2009). With typhoon center to the northwest of Taiwan, the westerly LLJ was resulted from the interaction of typhoon circulation with the southwest monsoon flow, which supplied the water vapor for the extreme rainfall (of ~1000 mm) over southwestern Taiwan. The Cloud-Resolving Storm Simulator with 1 km grid spacing was used to simulate the event, and it successfully reproduced the slow-moving rainbands, the embedded cells, and the dynamics of merger and back-building (BB) on 8 August as observed. Our model results suggest that the intense convection interacted strongly with the westerly LLJ that provided reversed vertical wind shear below and above the jet core. Inside mature cells, significant dynamical pressure perturbations (pd') are induced with positive (negative) pd' at the western (eastern) flank of the updraft near the surface and a reversed pattern aloft (>2 km). This configuration produced an upward directed pressure gradient force (PGF) to the rear side and favors new development to the west, which further leads to cell merger as the mature cells slowdown in eastward propagation. The strong updrafts also acted to elevate the jet and enhance the local vertical wind shear at the rear flank. Additional analysis reveals that the upward PGF there is resulted mainly by the shearing effect but also by the extension of upward acceleration at low levels. In the horizontal, the upstream-directed PGF induced by the rear-side positive pd' near the surface is much smaller, but can provide additional convergence for BB development upstream. Finally, the cold-pool mechanism for BB appears to be not important in the Morakot case, as the conditions for strong evaporation in downdrafts do not exist.


Author(s):  
Guillaume Chagnaud ◽  
Geremy Panthou ◽  
Theo Vischel ◽  
Thierry Lebel

Abstract The West African Sahel has been facing for more than 30 years an increase in extreme rainfalls with strong socio-economic impacts. This situation challenges decision-makers to define adaptation strategies in a rapidly changing climate. The present study proposes (i) a quantitative characterization of the trends in extreme rainfalls at the regional scale, (ii) the translation of the trends into metrics that can be used by hydrological risk managers, (iii) elements for understanding the link between the climatology of extreme and mean rainfall. Based on a regional non-stationary statistical model applied to in-situ daily rainfall data over the period 1983-2015, we show that the region-wide increasing trend in extreme rainfalls is highly significant. The change in extreme value distribution reflects an increase in both the mean and variability, producing a 5%/decade increase in extreme rainfall intensity whatever the return period. The statistical framework provides operational elements for revising the design methods of hydraulic structures which most often assume a stationary climate. Finally, the study shows that the increase in extreme rainfall is more attributable to an increase in the intensity of storms (80%) than to their occurrence (20%), reflecting a major disruption from the decadal variability of the rainfall regime documented in the region since 1950.


2018 ◽  
Vol 21 ◽  
pp. 36-42 ◽  
Author(s):  
Seyni Salack ◽  
Inoussa A. Saley ◽  
Namo Z. Lawson ◽  
Ibrahim Zabré ◽  
Elidaa K. Daku

2015 ◽  
Vol 15 (19) ◽  
pp. 11097-11115 ◽  
Author(s):  
C.-C. Wang ◽  
H.-C. Kuo ◽  
R. H. Johnson ◽  
C.-Y. Lee ◽  
S.-Y. Huang ◽  
...  

Abstract. This paper investigates the formation and evolution of deep convection inside the east–west oriented rainbands associated with a low-level jet (LLJ) in Typhoon Morakot (2009). With the typhoon center to the northwest of Taiwan, the westerly LLJ occurred as a result from the interaction of typhoon circulation with the southwest monsoon flow, which supplied the water vapor for the extreme rainfall (of ~ 1000 mm) over southwestern Taiwan. The Cloud-Resolving Storm Simulator with 1 km grid spacing was used to simulate the event, and it successfully reproduced the slow-moving rainbands, the embedded cells, and the dynamics of merger and back-building (BB) on 8 August as observed. Our model results suggest that the intense convection interacted strongly with the westerly LLJ that provided reversed vertical wind shear below and above the jet core. Inside mature cells, significant dynamical pressure perturbations (p'd) are induced with positive (negative) p'd at the western (eastern) flank of the updraft near the surface and a reversed pattern aloft (> 2 km). This configuration produced an upward-directed pressure gradient force (PGF) to the rear side and favors new development to the west, which further leads to cell merging as the mature cells slowdown in eastward propagation. The strong updrafts also acted to elevate the jet and enhance the local vertical wind shear at the rear flank. Additional analysis reveals that the upward PGF there is resulted mainly by the shearing effect but also by the extension of upward acceleration at low levels. In the horizontal, the upstream-directed PGF induced by the rear-side positive p'd near the surface is much smaller, but can provide additional convergence for BB development upstream. Finally, the cold-pool mechanism for BB appears to be not important in the Morakot case, as the conditions for strong evaporation in downdrafts do not exist.


2020 ◽  
Vol 33 (8) ◽  
pp. 3151-3172 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Douglas J. Parker ◽  
John H. Marsham ◽  
David P. Rowell ◽  
Francoise M. Guichard ◽  
...  

AbstractExtreme rainfall is expected to increase under climate change, carrying potential socioeconomic risks. However, the magnitude of increase is uncertain. Over recent decades, extreme storms over the West African Sahel have increased in frequency, with increased vertical wind shear shown to be a cause. Drier midlevels, stronger cold pools, and increased storm organization have also been observed. Global models do not capture the potential effects of lower- to midtropospheric wind shear or cold pools on storm organization since they parameterize convection. Here we use the first convection-permitting simulations of African climate change to understand how changes in thermodynamics and storm dynamics affect future extreme Sahelian rainfall. The model, which simulates warming associated with representative concentration pathway 8.5 (RCP8.5) until the end of the twenty-first century, projects a 28% increase of the extreme rain rate of MCSs. The Sahel moisture change on average follows Clausius–Clapeyron scaling, but has regional heterogeneity. Rain rates scale with the product of time-of-storm total column water (TCW) and in-storm vertical velocity. Additionally, prestorm wind shear and convective available potential energy both modulate in-storm vertical velocity. Although wind shear affects cloud-top temperatures within our model, it has no direct correlation with precipitation rates. In our model, projected future increase in TCW is the primary explanation for increased rain rates. Finally, although colder cold pools are modeled in the future climate, we see no significant change in near-surface winds, highlighting avenues for future research on convection-permitting modeling of storm dynamics.


2021 ◽  
Author(s):  
Wei-Ting Chen ◽  
Hong-Wen Jian ◽  
Peng-Jen Chen Chen ◽  
Chien-Ming Wu ◽  
Kristen L. Rasmussen

<p>This study investigates the synoptic-scale flows associated with extreme rainfall systems over the Asian–Australian monsoon region (90°E–160°E and 12°S–27°N). On the basis of the statistics of the 17-year Precipitation Radar observations from Tropical Rainfall Measurement Mission, a total of 916 extreme systems, with both the horizontal size and maximum rainfall intensity exceeding the 99.9<sup>th</sup> percentiles of the tropical rainfall systems, are identified over this region. The synoptic wind pattern and rainfall distribution surrounding each system are classified into four major types: vortex, coastal, coastal with vortex, and none of above, with each accounting for 44%, 29%, 7%, and 20%, respectively. The vortex type occurs mainly over the off-equatorial areas in boreal summer. The coast-related types show significant seasonal variations in their occurrence, with high frequency in the Bay of Bengal in boreal summer and on the west side of Borneo and Sumatra in boreal winter. The none-of-the-above type occurs mostly over the open ocean, and in boreal winter, these events are mainly associated with the cold surge events. The environment analysis shows that coast-related extremes in the warm season are found within the areas where high total water vapor and low-level vertical wind shear occur frequently. Despite the different synoptic environments, these extremes show a similar internal structure, with broad stratiform and wide convective core (WCC) rain. Furthermore, the maximum rain rate is located mostly over the convective area, near the convective–stratiform boundary in the system. Our results highlight the critical role of the strength and direction of synoptic flows in the generation of extreme rainfall systems near coastal areas. With the enhancement of the low-level vertical wind shear and moisture by the synoptic flow, the coastal convection triggered diurnally has a higher chance to organize into mesoscale convective systems and hence a higher probability to produce extreme rainfall.</p>


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2013 ◽  
Vol 31 (3) ◽  
pp. 413 ◽  
Author(s):  
André Becker Nunes ◽  
Gilson Carlos Da Silva

ABSTRACT. The eastern region of Santa Catarina State (Brazil) has an important history of natural disasters due to extreme rainfall events. Floods and landslides are enhancedby local features such as orography and urbanization: the replacement of natural surface coverage causing more surface runoff and, hence, flooding. Thus, studies of this type of events – which directly influence life in the towns – take on increasing importance. This work makes a quantitative analysis of occurrences of extreme rainfall events in the eastern and northern regions of Santa Catarina State in the last 60 years, through individual analysis, considering the history of floods ineach selected town, as well as an estimate through to the end of century following regional climate modeling. A positive linear trend, in most of the towns studied, was observed in the results, indicating greater frequency of these events in recent decades, and the HadRM3P climate model shows a heterogeneous increase of events for all towns in the period from 2071 to 2100.Keywords: floods, climate modeling, linear trend. RESUMO. A região leste do Estado de Santa Catarina tem um importante histórico de desastres naturais ocasionados por eventos extremos de precipitação. Inundações e deslizamentos de terra são potencializados pelo relevo acidentado e pela urbanização das cidades da região: a vegetação nativa vem sendo removida acarretando um maior escoamento superficial e, consequentemente, em inundações. Desta forma, torna-se de suma importância os estudos acerca deste tipo de evento que influencia diretamente a sociedade em geral. Neste trabalho é realizada uma análise quantitativa do número de eventos severos de precipitação ocorridos nas regiões leste e norte de Santa Catarina dos últimos 60 anos, por meio de uma análise pontual, considerandoo histórico de inundações de cada cidade selecionada, além de uma projeção para o fim do século de acordo com modelagem climática regional. Na análise dos resultados observou-se uma tendência linear positiva na maioria das cidades, indicando uma maior frequência deste tipo de evento nas últimas décadas, e o modelo climático HadRM3P mostra um aumento heterogêneo no número de eventos para todas as cidades no período de 2071 a 2100.Palavras-chave: inundações, modelagem climática, tendência linear.


Sign in / Sign up

Export Citation Format

Share Document