Training Calibration-based Counterfactual Explainers for Deep Learning Models in Medical Image Analysis

Author(s):  
Jayaraman J. Thiagarajan ◽  
Kowshik Thopalli ◽  
Deepta Rajan ◽  
Pavan Turaga

Abstract Artificial intelligence methods such as deep neural networks promise unprecedented capabilities in healthcare, from diagnosing diseases to prescribing treatments. While this can eventually produce a valuable suite of tools for automating clinical workflows, a critical step forward is to ensure that the predictive models are reliable and to enable a rigorous introspection of their behavior. This has led to the design of explainable AI techniques that are aimed at uncovering the relationships between discernible data signatures and decisions from machine-learned models, and characterizing strengths/weaknesses of models. In this context, the so-called counterfactual explanations that synthesize small, interpretable changes to a given query sample while producing desired changes in model predictions to support user-specified hypotheses (e.g., progressive change in disease severity) have become popular. When a model’s predictions are not well-calibrated (i.e., the prediction confidences are not indicative of the likelihood of the predictions being correct), the inverse problem of synthesizing counterfactuals can produce explanations with irrelevant feature manipulations. Hence, in this paper, we propose to leverage prediction uncertainties from the learned models to better guide this optimization. To this end, we present TraCE (Training Calibration-based Explainers), a counterfactual generation approach for deep models in medical image analysis, which utilizes pre-trained generative models and a novel uncertainty-based interval calibration strategy for synthesizing hypothesis-driven explanations. By leveraging uncertainty estimates in the optimization process, TraCE can consistently produce meaningful counterfactual evidences and elucidate complex decision boundaries learned by deep classifiers. Furthermore, we demonstrate the effectiveness of TraCE in revealing intricate relationships between different patient attributes and in detecting shortcuts, arising from unintended biases, in learned models. Given the widespread adoption of machine-learned solutions in radiology, our study focuses on deep models used for identifying anomalies in chest X-ray images. Using rigorous empirical studies, we demonstrate the superiority of TraCE explanations over several state-of-the-art baseline approaches, in terms of several widely adopted evaluation metrics in counterfactual reasoning. Our findings show that TraCE can be used to obtain a holistic understanding of deep models by enabling progressive exploration of decision boundaries, detecting shortcuts, and inferring relationships between patient attributes and disease severity.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jayaraman J. Thiagarajan ◽  
Kowshik Thopalli ◽  
Deepta Rajan ◽  
Pavan Turaga

AbstractThe rapid adoption of artificial intelligence methods in healthcare is coupled with the critical need for techniques to rigorously introspect models and thereby ensure that they behave reliably. This has led to the design of explainable AI techniques that uncover the relationships between discernible data signatures and model predictions. In this context, counterfactual explanations that synthesize small, interpretable changes to a given query while producing desired changes in model predictions have become popular. This under-constrained, inverse problem is vulnerable to introducing irrelevant feature manipulations, particularly when the model’s predictions are not well-calibrated. Hence, in this paper, we propose the TraCE (training calibration-based explainers) technique, which utilizes a novel uncertainty-based interval calibration strategy for reliably synthesizing counterfactuals. Given the wide-spread adoption of machine-learned solutions in radiology, our study focuses on deep models used for identifying anomalies in chest X-ray images. Using rigorous empirical studies, we demonstrate the superiority of TraCE explanations over several state-of-the-art baseline approaches, in terms of several widely adopted evaluation metrics. Our findings show that TraCE can be used to obtain a holistic understanding of deep models by enabling progressive exploration of decision boundaries, to detect shortcuts, and to infer relationships between patient attributes and disease severity.


2020 ◽  
Vol 13 (5) ◽  
pp. 999-1007
Author(s):  
Karthikeyan Periyasami ◽  
Arul Xavier Viswanathan Mariammal ◽  
Iwin Thanakumar Joseph ◽  
Velliangiri Sarveshwaran

Background: Medical image analysis application has complex resource requirement. Scheduling Medical image analysis application is the complex task to the grid resources. It is necessary to develop a new model to improve the breast cancer screening process. Proposed novel Meta scheduler algorithm allocate the image analyse applications to the local schedulers and local scheduler submit the job to the grid node which analyses the medical image and generates the result sent back to Meta scheduler. Meta schedulers are distinct from the local scheduler. Meta scheduler and local scheduler have the aim at resource allocation and management. Objective: The main objective of the CDAM meta-scheduler is to maximize the number of jobs accepted. Methods: In the beginning, the user sends jobs with the deadline to the global grid resource broker. Resource providers sent information about the available resources connected in the network at a fixed interval of time to the global grid resource broker, the information such as valuation of the resource and number of an available free resource. CDAM requests the global grid resource broker for available resources details and user jobs. After receiving the information from the global grid resource broker, it matches the job with the resources. CDAM sends jobs to the local scheduler and local scheduler schedule the job to the local grid site. Local grid site executes the jobs and sends the result back to the CDAM. Success full completion of the job status and resource status are updated into the auction history database. CDAM collect the result from all local grid site and return to the grid users. Results: The CDAM was simulated using grid simulator. Number of jobs increases then the percentage of the jobs accepted also decrease due to the scarcity of resources. CDAM is providing 2% to 5% better result than Fair share Meta scheduling algorithm. CDAM algorithm bid density value is generated based on the user requirement and user history and ask value is generated from the resource details. Users who, having the most significant deadline are generated the highest bid value, grid resource which is having the fastest processor are generated lowest ask value. The highest bid is assigned to the lowest Ask it means that the user who is having the most significant deadline is assigned to the grid resource which is having the fastest processor. The deadline represents a time by which the user requires the result. The user can define the deadline by which the results are needed, and the CDAM will try to find the fastest resource available in order to meet the user-defined deadline. If the scheduler detects that the tasks cannot be completed before the deadline, then the scheduler abandons the current resource, tries to select the next fastest resource and tries until the completion of application meets the deadline. CDAM is providing 25% better result than grid way Meta scheduler this is because grid way Meta scheduler allocate jobs to the resource based on the first come first served policy. Conclusion: The proposed CDAM model was validated through simulation and was evaluated based on jobs accepted. The experimental results clearly show that the CDAM model maximizes the number of jobs accepted than conventional Meta scheduler. We conclude that a CDAM is highly effective meta-scheduler systems and can be used for an extraordinary situation where jobs have a combinatorial requirement.


Author(s):  
Sanket Singh ◽  
Sarthak Jain ◽  
Akshit Khanna ◽  
Anupam Kumar ◽  
Ashish Sharma

2000 ◽  
Vol 30 (4) ◽  
pp. 176-185
Author(s):  
Tilman P. Otto

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


1996 ◽  
Vol 1 (2) ◽  
pp. 91-108 ◽  
Author(s):  
Tim McInerney ◽  
Demetri Terzopoulos

Sign in / Sign up

Export Citation Format

Share Document