scholarly journals Electrochemical Synthesis of Reduced Graphene Oxide‐Wrapped Polyaniline Nanorods As An Active Nanocomposite For Improved Photocurrent Generation And Photocatalytic And Antibacterial Activities

Author(s):  
Fares Fenniche ◽  
Abdellah Henni ◽  
Yasmine Khane ◽  
Djaber Aouf ◽  
Nessrine Harfouche ◽  
...  

Abstract This study depicts the electrochemical synthesis of nanocomposites basede on Polyaniline nanorods wrap with reduced graphene oxide (PANI-rGO) on ITO substrates. Synthesis of PANI-rGO nanocomposites was elaborated by the incorporation of rGO in PANI thin films during electropolymerization in the presence of sulfuric acid. The synthesis of reduced graphene oxide was by modification on the well-known Hammer's method. The thin films nanocomposites were characterized by X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (FESEM), UV–Visible and electrochemical photocurrent spectroscopy. FESEM revealed the formation of PANI nanorods with diameters between 50 and 150 nm. The XPS was employed to confirm the compositions of PANI-rGO nanocomposites. From photoelectrochemical results, the generated photocurrent was improved in the presence of rGO in PANI Nanorods. Whereas, experimental findings show that the introduction of rGO into PANI improved the photo response from 7 µA.cm-2 to 13 µA.cm-2. Integration of 3D rGO in PANI results in better photocatalytic performance for the degradation of Congo Red. The enhanced photocatalytic activity with presence of rGO revealed the good potential of PANI-GO nanocomposites for dye degradation. The effective removal of congo red up to 90% has been observed in acidic medium and is acceptable results compared to the surface area of the substrate. At optimum conditions, also the nature of the antibacterial activities has been investigated by ITO/PANI and ITO/PANI-rGO thin films, and the results have showed exhibited antibacterial activity against the growth of E.coli gram-negative bacteria.

2019 ◽  
Vol 3 (7) ◽  
pp. 1462-1470 ◽  
Author(s):  
Weiwei Wei ◽  
Rohit L. Vekariy ◽  
Chuanting You ◽  
Yafei He ◽  
Ping Liu ◽  
...  

Highly dense thin films assembled from cellulose nanofibers and reduced graphene oxide via van der Waals interactions to realize ultrahigh volumetric double-layer capacitances.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 623
Author(s):  
Monika Gupta ◽  
Huzein Fahmi Hawari ◽  
Pradeep Kumar ◽  
Zainal Arif Burhanudin ◽  
Nelson Tansu

The demand for carbon dioxide (CO2) gas detection is increasing nowadays. However, its fast detection at room temperature (RT) is a major challenge. Graphene is found to be the most promising sensing material for RT detection, owing to its high surface area and electrical conductivity. In this work, we report a highly edge functionalized chemically synthesized reduced graphene oxide (rGO) thin films to achieve fast sensing response for CO2 gas at room temperature. The high amount of edge functional groups is prominent for the sorption of CO2 molecules. Initially, rGO is synthesized by reduction of GO using ascorbic acid (AA) as a reducing agent. Three different concentrations of rGO are prepared using three AA concentrations (25, 50, and 100 mg) to optimize the material properties such as functional groups and conductivity. Thin films of three different AA reduced rGO suspensions (AArGO25, AArGO50, AArGO100) are developed and later analyzed using standard FTIR, XRD, Raman, XPS, TEM, SEM, and four-point probe measurement techniques. We find that the highest edge functionality is achieved by the AArGO25 sample with a conductivity of ~1389 S/cm. The functionalized AArGO25 gas sensor shows recordable high sensing properties (response and recovery time) with good repeatability for CO2 at room temperature at 500 ppm and 50 ppm. Short response and recovery time of ~26 s and ~10 s, respectively, are achieved for 500 ppm CO2 gas with the sensitivity of ~50 Hz/µg. We believe that a highly functionalized AArGO CO2 gas sensor could be applicable for enhanced oil recovery, industrial and domestic safety applications.


Carbon ◽  
2017 ◽  
Vol 115 ◽  
pp. 561-570 ◽  
Author(s):  
Hua Yang ◽  
Yang Cao ◽  
Junhui He ◽  
Yue Zhang ◽  
Binbin Jin ◽  
...  

2010 ◽  
Vol 96 (17) ◽  
pp. 173106 ◽  
Author(s):  
Brian A. Ruzicka ◽  
Lalani K. Werake ◽  
Hui Zhao ◽  
Shuai Wang ◽  
Kian Ping Loh

Sign in / Sign up

Export Citation Format

Share Document