scholarly journals Antecedents and enablers of supply chain reconfigurability and its effect on performance

Author(s):  
Slim ZIDI ◽  
Nadia Hamani ◽  
Lyes Kermad

Abstract The reconfiguration of supply chain is becoming a crucial concept used to deal with market disruptions and changes such as COVID 19 pandemic, demand uncertainty, new technologies, etc. It can be defined as the ability of the supply chain to change its structure and functions in order to adapt to new changes. Its assessment requires an understanding of its quantitative factors to provide indicators that are easy to interpret. Effective reconfigurability assessment can be achieved by measuring quantitatively its six characteristics (modularity, integrability, convertibility, diagnosability, scalability and customization). This paper aims at identifying the quantitative factors of each characteristic and their inter-relationships by using Total Interpretive Structural Modelling (TISM). The structural model obtained by TISM is applied to understand the dependency quantitative factors. Based on TISM results, a classification of quantitative factors is determined using « Matrice d'Impacts Croisés, Multiplication Appliquée à un Classement » (MICMAC) analysis. This paper may be helpful to understand the previously mentioned characteristics of reconfigurable supply chain in order to facilitate the measuring and the assessment of reconfigurability.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nishtha Agarwal ◽  
Nitin Seth

PurposeThe study tries to identify the barriers influencing supply chain resilience and examine the inter-relationships between them. These relationships are built on the basis of how one barrier drives or is driven by the changes in another barriers.Design/methodology/approachIn the first phase, literature review and with due discussion with experts, the barriers have been identified and shortlisted for an Indian automotive case company. In the second phase, total interpretive structural modelling (TISM) has been applied to examine inter-relationships between the barriers for an Indian automobile case company. Matrice d'impacts croisés multiplication appliquée á un classment (MICMAC) analysis has also been performed to analyse the driving and dependence power of the barriers.FindingsIn total, 11 barriers are identified from the first phase of the study. In the second phase, the TISM digraph is created which qualitatively explains the reason behind how one barrier leads to another. MICMAC analysis classifies these variables in four clusters namely autonomous, linkage, dependent and independent. These clusters characterise the barriers based on their driving and dependent power which helps managers in strategically tackling them while taking understanding from the TISM digraph.Research limitations/implicationsThree research implications can be made from the study. First, a comprehensive definition of supply chain which helps in understanding of resilience based on disruption phases and recovery. Second, 11 barriers are identified which hinder resilience in automotive sector. Their relationships are modelled using TISM which also gives why a particular relationship exists. Last, MICMAC analysis classifies barriers based on how high or low the driving and dependence power exists.Practical implicationsThe study offers significant implications for supply chain managers helping them in building resilience by identifying barriers and reducing their effect. Barriers are identified for case company which might help managers to tackle them during disruptions. The final TISM digraph depicts the “why” between the inter-relationships between the barriers to resilient supply chains. TISM shows that non-commitment of top management is the major root barrier which has been causing the other problems. MICMAC analysis is also performed along with discussion as to how autonomous, linkage, dependent and independent barriers can be tackled to build resilience.Originality/valueTISM is considered as an effective methodology for conceptual framework development as it also explains “why” between the relationships besides explaining the “what” as against ISM. Identification and understanding of barriers and their interrelationship will help supply chain managers to analyse the influence and inter-dependence of barriers on the resilience of the supply chain. Such understanding will help in mitigating/averting these barriers hence improving the resilience capability. It also adds to the knowledge base in the area of supply chain resilience where several authors have pointed the lack of research.


2019 ◽  
Vol 25 (7) ◽  
pp. 1198-1223 ◽  
Author(s):  
Rohit Agrawal ◽  
Vinodh S.

Purpose The purpose of this study is to develop a structural model based on total interpretive structural modelling (TISM) approach for analysis of factors influencing sustainable additive manufacturing (AM). Design/methodology/approach A total of 20 factors influencing sustainable AM are identified on the basis of literature review. Appropriate inputs from experts are obtained and TISM model is developed. Also, cross-impact Matrix multiplication applied to classification (MICMAC) analysis is carried out to categorize the factors. Findings Based on TISM model, “Flexibility in manufacturing”, “Time to develop new product” and “Local availability of technology” are found to be the dominant factors. MICMAC analysis indicates that 10 factors belong to driving and 10 factors belong to dependent category. Research limitations/implications In the present study, 20 factors have been considered. In future, additional factors can be considered to deal with technological advancements. Practical implications The conduct of the study will enable AM experts to systematically analyze the factors influencing sustainable AM. Originality/value The development of structural model for analysis of factors influencing sustainable AM manufacturing is the original contribution of authors.


Sign in / Sign up

Export Citation Format

Share Document