scholarly journals Signatures and Prognostic Values of Related Immune Targets in Tongue Cancer

Author(s):  
Xi Yu ◽  
Xiaofei Lv

Abstract Tongue cancer, as one of the most malignant oral cancers, is highly invasive and has a high risk of recurrence. At present, tongue cancer in the advanced stage is not obvious, easy to miss the opportunity of early diagnosis. It is important to find markers that can predict the occurrence and progression of tongue cancer. Bioinformatics analysis plays an important role in the acquisition of marker genes. GEO and TCGA data are very important public databases. In addition to expression data, TCGA database also contains corresponding clinical data. In this study, we screened three GEO datasets included GSE13601, GSE34105 and GSE34106 that met the standard. These data sets were combined using the SVA package to prepare the data for differential expression analysis, and then the LIMMA package was used to set the standard to p<0.05 and |log2 (FC)| ≥1.5. We got 170 DEGs (104, raised 66 downgrade). Besides, the DEseq package was used for differential expression analysis using the same criteria for samples in TCGA database. It ended up with 1589 DEGs (644 up-regulated, 945 down-regulated). By merging these two sets of DEGs, 5 common up-regulated DEGs (CCL20, SCG5, SPP1, KRT75 and FOLR3) and 15 common down-regulated DEGs were obtained. Further functional analysis of the DEGs showed that CCL20, SCG5 and SPP1 is closely related to prognosis and may be a therapeutic target of TSCC.

2019 ◽  
Author(s):  
Mahmoud M Ibrahim ◽  
Rafael Kramann

ABSTRACTMarker genes identified in single cell experiments are expected to be highly specific to a certain cell type and highly expressed in that cell type. Detecting a gene by differential expression analysis does not necessarily satisfy those two conditions and is typically computationally expensive for large cell numbers.Here we present genesorteR, an R package that ranks features in single cell data in a manner consistent with the expected definition of marker genes in experimental biology research. We benchmark genesorteR using various data sets and show that it is distinctly more accurate in large single cell data sets compared to other methods. genesorteR is orders of magnitude faster than current implementations of differential expression analysis methods, can operate on data containing millions of cells and is applicable to both single cell RNA-Seq and single cell ATAC-Seq data.genesorteR is available at https://github.com/mahmoudibrahim/genesorteR.


2017 ◽  
Author(s):  
Charlotte Soneson ◽  
Mark D. Robinson

AbstractBackgroundAs single-cell RNA-seq (scRNA-seq) is becoming increasingly common, the amount of publicly available data grows rapidly, generating a useful resource for computational method development and extension of published results. Although processed data matrices are typically made available in public repositories, the procedure to obtain these varies widely between data sets, which may complicate reuse and cross-data set comparison. Moreover, while many statistical methods for performing differential expression analysis of scRNA-seq data are becoming available, their relative merits and the performance compared to methods developed for bulk RNA-seq data are not sufficiently well understood.ResultsWe present conquer, a collection of consistently processed, analysis-ready public single-cell RNA-seq data sets. Each data set has count and transcripts per million (TPM) estimates for genes and transcripts, as well as quality control and exploratory analysis reports. We use a subset of the data sets available in conquer to perform an extensive evaluation of the performance and characteristics of statistical methods for differential gene expression analysis, evaluating a total of 30 statistical approaches on both experimental and simulated scRNA-seq data.ConclusionsConsiderable differences are found between the methods in terms of the number and characteristics of the genes that are called differentially expressed. Pre-filtering of lowly expressed genes can have important effects on the results, particularly for some of the methods originally developed for analysis of bulk RNA-seq data. Generally, however, methods developed for bulk RNA-seq analysis do not perform notably worse than those developed specifically for scRNA-seq.


2019 ◽  
Vol 35 (22) ◽  
pp. 4671-4678
Author(s):  
Justin D Finkle ◽  
Neda Bagheri

Abstract Motivation To understand the regulatory pathways underlying diseases, studies often investigate the differential gene expression between genetically or chemically differing cell populations. Differential expression analysis identifies global changes in transcription and enables the inference of functional roles of applied perturbations. This approach has transformed the discovery of genetic drivers of disease and possible therapies. However, differential expression analysis does not provide quantitative predictions of gene expression in untested conditions. We present a hybrid approach, termed Differential Expression in Python (DiffExPy), that uniquely combines discrete, differential expression analysis with in silico differential equation simulations to yield accurate, quantitative predictions of gene expression from time-series data. Results To demonstrate the distinct insight provided by DiffExpy, we applied it to published, in vitro, time-series RNA-seq data from several genetic PI3K/PTEN variants of MCF10a cells stimulated with epidermal growth factor. DiffExPy proposed ensembles of several minimal differential equation systems for each differentially expressed gene. These systems provide quantitative models of expression for several previously uncharacterized genes and uncover new regulation by the PI3K/PTEN pathways. We validated model predictions on expression data from conditions that were not used for model training. Our discrete, differential expression analysis also identified SUZ12 and FOXA1 as possible regulators of specific groups of genes that exhibit late changes in expression. Our work reveals how DiffExPy generates quantitatively predictive models with testable, biological hypotheses from time-series expression data. Availability and implementation DiffExPy is available on GitHub (https://github.com/bagherilab/diffexpy). Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document