scholarly journals Pose Measurement and Assembly of Spacecraft Components based on Assembly Features and a Consistent Coordinate System

Author(s):  
Shuqing Chen ◽  
Tiemin Li ◽  
Yao Jiang

Abstract To assemble spacecraft automatically and precisely, it is vital to measure the relative spatial pose (position and orientation) of the assembly features of the spacecraft components before assembly. For large-scale spacecraft components, the global measurement method is mainly utilized to guide assembly control, and its accuracy and efficiency have ultimately failed to meet requirements. To address this issue, a novel measurement method is proposed. Since the goal is to measure the relative spatial pose of the assembly features of the spacecraft components, the proposed method measures it directly to ensure the consistency of the measurement and assembly coordinate system. This method has the advantage of high precision because it can reduce the influence of structural parameter errors and is not limited by the scale of the spacecraft components. In addition, it requires only one offline calibration, which significantly improves the efficiency of online measurement and assembly. Taking the control moment gyroscope (CMG) assembly task as an example, a measurement system and its corresponding calibration device are designed and developed. After calibration by the calibration device, the measurement system is mounted on the assembly features of the CMG to measure the relative spatial pose between the assembly features of the CMG and the assembly features of the mounted base (MB). Finally, six assembly experiments are completed according to the measurement results. The experimental results show that this method has high accuracy and can guide the robot to achieve high assembly accuracy, satisfying the assembly requirements of typical spacecraft components.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Zhang ◽  
Wei Liu ◽  
Zhiguang Lan ◽  
Zhiyuan Zhang ◽  
Fan Ye ◽  
...  

Considering the limited measurement range of a machine vision method for the three-dimensional (3D) surface measurement of large-scale components, a noncontact and flexible global measurement method combining a multiple field of view (FOV) is proposed in this paper. The measurement system consists of two theodolites and a binocular vision system with a transfer mark. The process of multiple FOV combinations is described, and a new global calibration method is proposed to solve the coordinate system unification issue of different instruments in the measurement system. In addition, a high-precision image acquisition method, which is based on laser stripe scanning and centre line extraction, is discussed to guarantee the measurement efficiency. With the measured 3D data, surface reconstruction of large-scale components is accomplished by data integration. Experiments are also conducted to verify the precision and effectiveness of the global measurement method.


2019 ◽  
Author(s):  
Burak Akbulut ◽  
Ozan Tekinalp ◽  
Ferhat Arberkli ◽  
Kivanc Azgin

2019 ◽  
Vol 39 (4) ◽  
pp. 388-396 ◽  
Author(s):  
Peng Zhao ◽  
Yao Zhao ◽  
Jianfeng Zhang ◽  
Junye Huang ◽  
Neng Xia ◽  
...  

AbstractAn online and feasible clamping force measurement method is important in the injection molding process and equipment. Based on the sono-elasticity theory, anin situclamping force measurement method using ultrasonic technology is proposed in this paper. A mathematical model is established to describe the relationship between the ultrasonic propagation time, mold thickness, and clamping force. A series of experiments are performed to verify the proposed method. Experimental findings show that the measurement results of the proposed method agree well with those of the magnetic enclosed-type clamping force tester method, with difference squares less than 2 (MPa)2and errors bars less than 0.7 MPa. The ultrasonic method can be applied in molds of different thickness, injection molding machines of different clamping scales, and large-scale injection cycles. The proposed method offers advantages of being highly accurate, highly stable, simple, feasible, non-destructive, and low-cost, providing significant application prospects in the injection molding industry.


2013 ◽  
Vol 347-350 ◽  
pp. 197-200
Author(s):  
Yu Gong ◽  
Jing Cai Zhang ◽  
Hong Qi Liu

In this paper, research on measurement methods of hole during the parts online detection has been made. Both diameter and position of the hole are going to be detected in the same measurement system. In order to obtain higher accuracy and efficiency, a comparative analysis test of using the contact probes, the inductive sensor, the laser sensor, the forward and back lighting CCD imaging have been achieved. Results show that the contact measurement using inductive sensor is more suitable for the system, for the reason that it has higher reliability and efficiency.


Sign in / Sign up

Export Citation Format

Share Document