A Deep Hole Stress Measurement Device

1974 ◽  
Author(s):  
Earl R. Hoskins ◽  
Edwin H. Oshier
2000 ◽  
Author(s):  
Noursaied Harchani ◽  
Fernando Jimenez ◽  
Mohammed Al-Mohammed ◽  
Daniel Esteve ◽  
M. Courvoisier

1985 ◽  
Author(s):  
Gary Havey ◽  
Jack Herrlin ◽  
Dave Kampf

2006 ◽  
Vol 524-525 ◽  
pp. 549-554 ◽  
Author(s):  
W.R. Mabe ◽  
W.J. Koller ◽  
A.M. Holloway ◽  
P.R. Stukenborg

This paper presents the results of an experimental validation of the deep hole drill residual stress measurement method. A validation test specimen was fabricated and plastically loaded to impose a permanent residual stress field within the specimen. The validation test specimen was designed to provide a variety of stress profiles as a function of location within the specimen. A finite element analysis of the validation test specimen was performed in order to provide a reference solution for comparison to the deep hole drill experimental results. Results from experimental testing of the validation test specimen agree well with the finite element analysis reference solution, thereby providing further validation of the deep hole drill method to measure residual stresses.


2016 ◽  
Vol 28 (10) ◽  
pp. 1249-1259 ◽  
Author(s):  
Xiang-Fan Wu ◽  
Xing-Ming Xiao ◽  
Zu-Zhi Tian ◽  
Fei Chen ◽  
Jian Wang ◽  
...  

On the basis of shear working mode of magnetorheological fluid, in this article, a novel temperature controllable yield stress measurement device is designed, and the double magnetic circuit structure and the heating structure are proposed. And then, the magnetic field and temperature field of the measurement device are simulated, respectively, by the finite element method. Furthermore, several experiments are carried out to evaluate the magnetic field, measurement precision, and repeatability of the self-designed device. The results indicate that the proposed measurement device has uniform magnetic field distribution and controllable temperature and also has high yield stress testing accuracy and repeatability.


Author(s):  
Amir H. Mahmoudi ◽  
David J. Smith ◽  
Chris E. Truman ◽  
Martyn J. Pavier

Accurate evaluation of residual stress is essential if is to be taken into account in structural integrity assessments. For thick components, many non-destructive residual stress measurement techniques cannot be used since they are unable to measure the stresses deep within the component. Measurement techniques which involve mechanical strain relief through material removal are the only alternative. Recently, it has been found that these techniques may fail to measure the stresses correctly when highly triaxial stresses are present because plastic redistribution can occur when the material removal is carried out. The Deep Hole Drilling technique is a very powerful method to measure the stresses within very thick engineering components. However, it can suffer from high levels of plasticity and lead to inaccurate results. It is shown in the present research that the effect of plasticity on the measured stresses can be eliminated. In the present work, the effect of gauge volume on the plasticity effect is investigated.


Sign in / Sign up

Export Citation Format

Share Document