Efficiency Study of Implicit and Explicit Time Integration Operators for Finite Element Applications

Author(s):  
Michael G. Katona ◽  
Robert Thompson ◽  
Jim Smith
1986 ◽  
Vol 65 (2) ◽  
pp. 253-272 ◽  
Author(s):  
L. Garcia ◽  
H.R. Hicks ◽  
B.A. Carreras ◽  
L.A. Charlton ◽  
J.A. Holmes

Author(s):  
Tamer Wasfy

A new technique for modeling rigid bodies undergoing spatial motion using an explicit time-integration finite element code is presented. The key elements of the technique are: (a) use of the total rotation matrix relative to the inertial frame to measure the rotation of the rigid bodies; (b) time-integration of the rotational equations of motion in a body fixed (material) frame, with the resulting incremental rotations added to the total rotation matrix; (c) penalty formulation for creating connection points (virtual nodes which do not add extra degrees of freedom) on the rigid-body where joints can be placed. The use of the rotation matrix along with incremental rotation updates circumvents the problem of singularities associated with other types of three and four parameter rotation measures. Benchmark rigid multibody dynamics problems are solved to demonstrate the accuracy of the present technique.


Author(s):  
J. M. Rodriguez ◽  
S. Larsson ◽  
J. M. Carbonell ◽  
P. Jonsén

AbstractThis work presents the development of an explicit/implicit particle finite element method (PFEM) for the 2D modeling of metal cutting processes. The purpose is to study the efficiency of implicit and explicit time integration schemes in terms of precision, accuracy and computing time. The formulation for implicit and explicit time marching schemes is developed, and a detailed study on the explicit solution steps is presented. The PFEM remeshing procedures for insertion and removal of particles have been improved to model the multiple scales of time and/or space of the solution. The detection and treatment of the rigid tool contact are presented for both, implicit and explicit schemes. The performance of explicit/implicit integration is studied with a set of different two-dimensional orthogonal cutting tests of AISI 4340 steel at cutting speeds ranging from 1 m/s up to 30 m/s. It was shown that if the correct selection of the time integration scheme is made, the computing time can decrease up to 40 times. It allows us to affirm that the computing time of the PFEM simulations can be excessive due to the used time marching scheme independently of the meshing process. As a practical result, a set of recommendations to select the time integration schemes for a given cutting speed are given. This is intended to minimize one of the negative constraints pointed out by the industry when using metal cutting simulators.


2012 ◽  
Vol 40 (1-2) ◽  
pp. 5-32
Author(s):  
Gergely Molnár ◽  
Imre Bojtár

2014 ◽  
Vol 580-583 ◽  
pp. 3038-3041
Author(s):  
Chao Jiang Fu

The mixed time integration parallel algorithm for nonlinear dynamic analysis was presented by synthesising the implicit and explicit time integration techniques. The parallel algorithm employing mixed time integration technique was devised with domain decomposition. Concurrency was introduced into this algorithm by integrating interface nodes with explicit time integration technique and solving local subdomains with implicit algorithm. Numerical example was implemented to validate the performance of the parallel algorithm. Numerical studies indicate that the proposed algorithm is superior in performance to the implicit algorithm.


Sign in / Sign up

Export Citation Format

Share Document