A Method of Characteristics Computer Program for Three-Dimensional Supersonic Internal Flows

1979 ◽  
Author(s):  
W. C. Armstrong
2002 ◽  
Vol 22 (5) ◽  
pp. 202-202
Author(s):  
Nasser Alidadi ◽  
Mohammad R. Mokhber Dezfouli ◽  
Mohammad Gholi Nadalian ◽  
Ali Rezakhani ◽  
Iradj Nouroozian

1977 ◽  
Vol 191 (1) ◽  
pp. 187-193 ◽  
Author(s):  
J. C. Miles ◽  
G. A. Wardill

A three dimensional structural collapse analysis computer program is described, and illustrated by reference to a safety vehicle structure analysed and designed using the program. The particular problems of large displacements and material non-linearity are accounted for, and a method of estimating the permanent set which results after impact is described. Based on an incremental formulation of the conventional finite-element method, the computer program is capable of tracing the complete load deflection characteristics of a structure up to and beyond the point of collapse.


1969 ◽  
Vol 91 (3) ◽  
pp. 891-896 ◽  
Author(s):  
G. E. Novak ◽  
B. J. Eck

A numerical solution is presented for both the transient temperature and three-dimensional stress distribution in a railcar wheel resulting from a simulated emergency brake application. A computer program has been written for generating thermoelastic solutions applicable to wheels of arbitrary contour with temperature variations in both axial and radial directions. The results include the effect of shear stresses caused by the axial-radial temperature gradients and the high degree of boundary irregularity associated with this type of problem. The program has been validated by computing thermoelastic solutions for thin disks and long cylinders; the computed values being in good agreement with the closed form solutions. Currently, the computer program is being extended to general stress solutions corresponding to the transient temperature distributions obtained by simulated drag brake applications. When this work is completed, it will be possible to synthesize the thermal history of a railcar wheel and investigate the effects of wheel geometry in relation to thermal fatigue.


2008 ◽  
Vol 41 (2) ◽  
pp. 479-480 ◽  
Author(s):  
Ludmila Urzhumtseva ◽  
Alexandre Urzhumtsev

The computer programCRYC3Dworks with three-dimensional crystallographic geometric objects or groups of them and calculates their basic geometric characteristics by a simple click in the menu. In particular, this includes vector operations in both direct and reciprocal spaces and cell transformations. Collecting basic crystallographic operations in a single and simple program helps crystallographers to avoid looking for `fast-and-dirty' scripts or using large and unwieldy packages and may be useful in everyday work. When running the program in its principal mode, macro-operations are accompanied by a list of elementary geometric operations. This feature, together with the presence of a single-command mode and online help, may be useful also as a teaching tool.


1987 ◽  
Vol 20 (6) ◽  
pp. 532-535 ◽  
Author(s):  
C. Abad-Zapatero ◽  
T. J. O'Donnell

TABLES is a computer program developed to display the crystal symmetry and the spatial location of the different symmetry operators for a given space group using interactive computer graphics. It allows the three-dimensional interactive display of the space-group information contained in International Tables for Crystallography [(1983), Vol. A. Dordrecht: Reidel]. Such a program is useful as a teaching aid in crystallography and is valuable for exploring molecular packing arrangements.


2012 ◽  
Vol 45 (5) ◽  
pp. 1054-1056 ◽  
Author(s):  
Matthew Sale ◽  
Maxim Avdeev

A computer program,3DBVSMAPPER, was developed to generate bond-valence sum maps and bond-valence energy landscapes with minimal user intervention. The program is designed to calculate the spatial distributions of bond-valence values on three-dimensional grids, and to identify infinitely connected isosurfaces in these spatial distributions for a given bond-valence mismatch or energy threshold and extract their volume and surface area characteristics. It is implemented in the Perl scripting language embedded in AccelrysMaterials Studioand has the capacity to process automatically an unlimited number of materials using crystallographic information files as input.


2003 ◽  
pp. 55-82
Author(s):  
M. Despotovic ◽  
Milun Babic ◽  
D. Milovanovic ◽  
Vanja Sustersic

This paper describes a three-dimensional compressible Navier-Stokes code, which has been developed for analysis of turbocompressor blade rows and other internal flows. Despite numerous numerical techniques and statement that Computational Fluid Dynamics has reached state of the art, issues related to successful simulations represent valuable database of how particular tech?nique behave for a specifie problem. This paper deals with rapid numerical method accurate enough to be used as a design tool. The mathematical model is based on System of Favre averaged Navier-Stokes equations that are written in relative frame of reference, which rotates with constant angular velocity around axis of rotation. The governing equations are solved using finite vol?ume method applied on structured grids. The numerical procedure is based on the explicit multistage Runge-Kutta scheme that is coupled with modem numerical procedures for convergence acceleration. To demonstrate the accuracy of the described numer?ical method developed software is applied to numerical analysis of flow through impeller of axial turbocompressor, and obtained results are compared with available experimental data.


Sign in / Sign up

Export Citation Format

Share Document