Curvature Effects on the Heat Transfer Performance of Three-Dimensional Film Cooling of Gas Turbine Blades.

1982 ◽  
Author(s):  
E. R. G. Eckert ◽  
R. J. Goldstein
2021 ◽  
pp. 1-13
Author(s):  
Faisal Shaikh ◽  
Budimir Rosic

Abstract Gas turbine blades and vanes are typically manufactured with small clearances between adjacent vane and blade platforms, termed the midpassage gap. The midpassage gap reduces turbine efficiency and causes additional heat load into the vane platform, as well as changing the distribution of endwall heat transfer and film cooling. This paper presents a low-order analytical analysis to quantify the effects of the midpassage gap on aerodynamics and heat transfer, verified against an experimental campaign and CFD. Using this model, the effects of the gap can be quantified, for a generic turbine stage, based only on geometric features and the passage static pressure field. It is found that at present there are significant losses and a large proportion of heat load caused by the gap, but that with modified design this could be reduced to negligible levels. Cooling flows into the gap to prevent ingression are investigated analytically and with CFD. Recommendations are given for targets that turbine designers should work toward in reducing the adverse effects of the midpassage gap. A method to estimate the effect of gap flow is presented, so that for any machine the significance of the gap may be assessed.


Author(s):  
Ping Dong ◽  
R. S. Amano

The lifetime of the modern gas turbines greatly depends on the durability of hot section components operating at high temperatures. Film cooling is key to air cooling technologies in modern gas turbine and widely used in high-temperature and high-pressure blades as an active cooling scheme. The requirements of accurate prediction of aerodynamic flow and heat transfer in gas turbine blades lay the essential foundation of cooling effectiveness improvement and working life estimation. In recent days, Large Eddy Simulations (LES) is considered as a useful tool to predict turbulent flows and heat transfer around gas turbine blades, but, comparing to the Reynolds-Averaged Navier–Stokes (RANS) methods, the LES method usually needs more computing resource and depends on computational power and mesh quality. In this paper, LES/DES (Detached Eddy Simulation) predictions were compared to RANS prediction with interest in the accuracy and improvement of turbulent flow and heat transfer phenomena around NASA’s C3X high-pressure gas turbine vane with leading edge cooling film. RANS/LES/DES were detailed and further investigated to assess their ability to predict flow and heat transfer in boundary layer around C3X vane. The current predictions showed that the mix between film cooling injections and free stream resulted in complex flow and heat transfer in the boundary layer on the external vane surface. The predictions of the aerodynamic load along the C3X vane with RANS/LES/DES were almost identical and agreed well with the experimental results. However, the heat transfer predictions with RANS/LES/DES were different. The transition prediction showed the best agreement with the experiment data in the most region. The LES prediction only partially agreed with the experimental data before separation point on the suction side and mild pressure gradient region on the pressure side. The DES and RANS predictions agreed with the experiment data after separation point on the suction side and most region on the pressure side.


Author(s):  
Yigang Luan ◽  
Lianfeng Yang ◽  
Yue Yin ◽  
Pietro Zunino

Abstract Nowadays, gas turbine engines play an indispensable role in modern industry, which have been widely used especially in the aviation, marine and energy fields. The turbine inlet temperature is one of the most important factors that influences the performance of the turbine engine. It’s acknowledged that the higher turbine inlet temperature contributes to the overall gas turbine engine efficiency. Therefore, the internal cooling technology of turbine blades is of vital importance. This paper mainly studies the effects of dimples and protrusions on flow and heat transfer in matrix cooling channels and optimize the performance of the matrix cooling structure by numerical simulation and experiment methods. Thirteen cases have been calculated under Re = 10,000∼80,000 by the commercial code ANSYS Fluent. Structures with different layouts of dimples and protrusions were considered, such as the number, distance and the depth ratio. The original model has been strengthened due to the dimple and protrusion structure, which improves heat transfer performance as well as the thermal performance factor (TPF) on condition that the pressure loss increases slightly. Meanwhile, the optimized structures have been made and tested by the transient liquid crystal technique (TLC). A comparison between the CFD results and the experimental data is made. Note that the heat transfer performance is much better when the ratio of the dimple depth and the dimple diameter is equal to 0.3, compared with the ratio of 0.1 and 0.2. In terms of the cases with two sides dimples, the heat transfer can be enhanced by increasing the number of the dimples. In addition, the heat transfer performance is the best when both of dimples and protrusions are applied. Nu/Nu0 and TPF increase by up to approximately 7% and 5% respectively.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Ahmed Khalil ◽  
Hatem Kayed ◽  
Abdallah Hanafi ◽  
Medhat Nemitallah ◽  
Mohamed Habib

This work investigates the performance of film-cooling on trailing edge of gas turbine blades using unsteady three-dimensional numerical model adopting large eddy simulation (LES) turbulence scheme in a low Mach number flow regime. This study is concerned with the scaling parameters affecting effectiveness and heat transfer performance on the trailing edge, as a critical design parameter, of gas turbine blades. Simulations were performed using ANSYS-fluentworkbench 17.2. High quality mesh was adapted, whereas the size of cells adjacent to the wall was optimized carefully to sufficiently resolve the boundary layer to obtain insight predictions of the film-cooling effectiveness on a flat plate downstream the slot opening. Blowing ratio, density ratio, Reynolds number, and the turbulence intensity of the mainstream and coolant flow are optimally examined against the film-cooling effectiveness. The predicted results showed a great agreement when compared with the experiments. The results show a distinctive behavior of the cooling effectiveness with blowing ratio variation as it has a dip in vicinity of unity which is explained by the behavior of the vortex entrainment and momentum of coolant flow. The negative effect of the turbulence intensity on the cooling effectiveness is demonstrated as well.


Author(s):  
Cong-Truong Dinh ◽  
Tai-Duy Vu ◽  
Tan-Hung Dinh ◽  
Phi-Minh Nguyen

Abstract In gas turbines, the turbine blades are always working in the highly temperature overhead the permissible metal temperatures. To safe operation, the turbine blades are needed to cool. Many researchs in turbine cooling technology can be categorized as internal and external cooling. This paper presents an investigation of cutted-root rib design, where a part of rib was truncated below to create an extra-passage in the root rib applied in the internal cooling turbine blades of jet engine using three-dimensional Reynolds-averaged Navier-Stokes with the SST model. The object of this investigation is to reduce the vortex occurring near the rib for improving the performance of heat transfer, such as the Nusselt number and thermal performance factor. To investigate the heat transfer performance and fluid flow characteristics of internal cooling turbine blades, a parametric study of the cutted-root rib was performed using various geometric parameters related to the height and shapes of the extra-passage. The cutted-root rib geometry is designed in ANSYS DesignModeler, and then meshed by using ICEM-CFD, analysed and post-processed using Ansys-CFX. The numerical results showed that all heat transfer parameter with the cutted-root rib design was greater than the original case without cutted-root rib.


Author(s):  
Faisal Shaikh ◽  
Budimir Rosic

Abstract Gas turbine blades and vanes are typically manufactured with small clearances between adjacent vane and blade platforms, termed the midpassage gap. The midpassage gap reduces turbine efficiency and causes additional heat load into the vane platform, as well as changing the distribution of endwall heat transfer and film cooling. This paper presents a low-order analytical analysis to quantify the effects of the midpassage gap on aerodynamics and heat transfer, verified against an experimental campaign and CFD. Using this model, the effects of the gap can be quantified, for a generic turbine stage, based only on geometric features and the passage static pressure field. It is found that at present there are significant losses and a large proportion of heat load caused by the gap, but that with modified design this could be reduced to negligible levels. Cooling flows into the gap to prevent ingression are investigated analytically and with CFD. Recommendations are given for targets that turbine designers should work toward in reducing the adverse effects of the midpassage gap. A method to estimate the effect of gap flow is presented, so that for any machine the significance of the gap may be assessed.


Sign in / Sign up

Export Citation Format

Share Document