Seismic Stability Evaluation of Folsom Dam and Reservoir Project. Report 7. Upstream Retaining Wall

1988 ◽  
Author(s):  
Jr Leeman ◽  
Hynes Harold J. ◽  
Vanadit-Ellis Mary E. ◽  
Tsuchida Wipawi ◽  
Takashi
2021 ◽  
Author(s):  
Vipin Kumar ◽  
Léna Cauchie ◽  
Anne-Sophie Mreyen ◽  
Philippe Cerfontaine ◽  
Mihai Micu ◽  
...  

<p>Seismic stability evaluation plays a crucial role in landslide disaster risk reduction. Related modeling also has to consider the potential influences of the rainfall on the hillslopes. This study aims at understanding the relative influence of the seismic loading and extreme cumulative rainfall on a massive active landslide in the seismically active Vrancea-Buzau region of the Romanian Carpathians (45° 30' 23" N, 26° 25' 05" E). This region has been subjected to more than 700 earthquakes (M>4) events with the highest magnitude of 7.2 (M<sub>w</sub>) during the year 1960-2019. Rainfall data of the year 2000-2019 revealed the occurrence of relatively intense rainfall events, especially during the last ten years. The landslide has an aerial dimension of ~9.1 million m². It hosts the small village of Varlaam at the toe along the Bisca River. The slope (with an average gradient of 15-20°) is covered by shrubs and scattered trees near its borders and is relatively barren in the central part. Shales with some intercalated sandstone layers belonging to the Miocene thrust belt constitute the rocks of the slope.   </p><p>A first survey involving the multi-station array and related Horizontal-to-Vertical noise Spectral Ratio (HVSR) measurements was completed in summer 2019. The findings of the HVSR were processed using the inversion process to infer the shear wave velocity distribution with depth and to detect the sliding surface of the landslide. These velocities were further used to estimate the geotechnical properties of the subsurface using the empirical equations. The HVSR based depth profiles and the Unmanned Air Vehicle based topographic information were used to take four 2D slope sections. These sections were considered for 2D discrete element modeling based stability evaluation under static and dynamic condition along with sensitivity analysis. Static simulation was used to determine the Factor of Safety (FS) using the shear strength reduction approach. Ricker wavelet was used as input seismic load in the dynamic simulation. Potential run-out and flow characteristics of the slope material were explored using the Voellmy rheology based RAMMS software. The relationship between rainfall, surface runoff, and soil moisture was also explored to understand the hydrogeological influence on slope stability.</p><p>Though the slope reveals meta-stability (1.0<FS<2.0) condition under static loading, displacement in the soil reaches up to 1.5 m that further increases to 2.8 m under dynamic loading. According to the topographic characteristics of the slope and to the presence of landslide material or intact bedrock near the surface, acceleration along the slope reaches a Peak Ground Acceleration in the range of 0.6 to 1.3g. Eight extreme rainfall events (>50mm/24 hours) during the year 2000-2019 are noted to temporally coincide with enhanced surface runoff and increased soil moisture in the region. Debris flow runout modeling indicated that the slope material may attain a maximum flow height and flow velocity of 13±0.8 m and 5±0.5 m/sec, respectively, along the river channel.</p><p><strong>Keywords: </strong>Landslide;<strong> </strong>Earthquake; Slope stability; Runout; SE Carpathian</p>


2018 ◽  
Vol 13 (3) ◽  
pp. 171-181
Author(s):  
Kiyonobu KASAMA ◽  
Shiro YAMAGATA ◽  
Hiroki TANAKA ◽  
Zentaro FURUKAWA ◽  
Noriyuki YASUFUKU

2019 ◽  
Vol 281 ◽  
pp. 02008
Author(s):  
Hicham Alhajj Chehade ◽  
Daniel Dias ◽  
Marwan Sadek ◽  
Fadi Hage Chehade ◽  
Orianne Jenck

Assessment of internal seismic stability of geosynthetic reinforced cohesive soil retaining walls with likelihood for developing cracks in the failure mechanism is typically done with the limit equilibrium method. However, in this paper, the kinematic theorem of limit analysis combined with the discretization method are used to implement the crack formation in the collapse mechanism in the internal seismic assessment of geosynthetic reinforced soil retaining walls within the framework of the pseudo-static approach. The presence of the crack leads to an increase of the required reinforcement strength that prevent the failure of the structure.


2015 ◽  
Vol 5 (1) ◽  
pp. 56-61 ◽  
Author(s):  
A. Pain ◽  
D. Choudhury ◽  
S. K. Bhattacharyya

1989 ◽  
Author(s):  
Richard S. Olsen ◽  
Paul F. Bluhm ◽  
M. E. Hynes ◽  
Donald E. Yule ◽  
III Marcuson ◽  
...  

2019 ◽  
Vol 14 (9) ◽  
pp. 1154-1169
Author(s):  
Hiroshi Nakazawa ◽  
Kazuya Usukura ◽  
Tadashi Hara ◽  
Daisuke Suetsugu ◽  
Kentaro Kuribayashi ◽  
...  

The earthquake (Mw 7.3) that struck Nepal on April 25, 2015 caused damage to many civil engineering and architectural structures. While several road gabion retaining walls in mountainous regions incurred damage, there was very little information that could be used to draw up earthquake countermeasures in Nepal, because there have been few construction cases or case studies of gabion structures, nor have there been experimental or analytical studies on their earthquake resistance. Therefore, we conducted a shake table test using a full-scale gabion retaining wall to evaluate earthquake resistance. From the experiments, it was found that although gabion retaining walls display a flexible structure and deform easily due to the soil pressure of the backfill, they are resilient structures that tend to resist collapse. Yet, because retaining walls are assumed to be rigid bodies in the conventional stability computations used to design them, the characteristics of gabions as flexible structures are not taken advantage of. In this study, we propose an approach to designing gabion retaining walls by comparing the active collapse surface estimated by the trial wedge method, and the experiment results obtained from a full-scale model of a vertically-stacked wall, which is a structure employed in Nepal that is vulnerable to earthquake damage. When the base of the estimated slip line was raised for the trial wedge method, its height was found to be in rough agreement with the depth at which the gabion retaining wall deformed drastically in the experiment. Thus, we were able to demonstrate the development of a method for evaluating the seismic stability of gabion retaining walls that takes into consideration their flexibility by adjusting the base of the trial soil wedge.


2013 ◽  
Vol 31 (4) ◽  
pp. 1393-1398 ◽  
Author(s):  
Xiaoxi Zhang ◽  
Siming He ◽  
Qian Su ◽  
Wei Jiang

Sign in / Sign up

Export Citation Format

Share Document