Optoelectronic Workshops 4: Liquid Crystals for Laser Applications

1988 ◽  
Author(s):  
Stephen Jacobs ◽  
Juergen Pohlmann
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
T. Z. Kosc ◽  
A. A. Kozlov ◽  
S. Papernov ◽  
K. R. P. Kafka ◽  
K. L. Marshall ◽  
...  

Abstract We investigate the damage resistance of saturated and unsaturated liquid crystals (LC’s) under a wide range of laser excitation conditions, including 1053-nm pulse durations between 600 fs and 1.5 ns and nanosecond pulse excitation at 351 nm and 532 nm. This study explores the relationship between the LC’s resistance to laser-induced breakdown (damage) and the electronic structure (π-electron delocalization) of the constituent molecules. The laser-induced damage threshold at all wavelengths and pulse durations was consistently higher in saturated materials than in their unsaturated counterparts. The wavelength’s dependence in the results suggests that the energy coupling process that leads to laser-induced breakdown is governed by the energy separation between the ground state and the first and second excited states, while the pulse duration’s dependence in the results reveals the important role of electron relaxation between the excited states. A qualitative description was developed to interpret the experimental observations.


Author(s):  
M. Locke ◽  
J. T. McMahon

The fat body of insects has always been compared functionally to the liver of vertebrates. Both synthesize and store glycogen and lipid and are concerned with the formation of blood proteins. The comparison becomes even more apt with the discovery of microbodies and the localization of urate oxidase and catalase in insect fat body.The microbodies are oval to spherical bodies about 1μ across with a depression and dense core on one side. The core is made of coiled tubules together with dense material close to the depressed membrane. The tubules may appear loose or densely packed but always intertwined like liquid crystals, never straight as in solid crystals (Fig. 1). When fat body is reacted with diaminobenzidine free base and H2O2 at pH 9.0 to determine the distribution of catalase, electron microscopy shows the enzyme in the matrix of the microbodies (Fig. 2). The reaction is abolished by 3-amino-1, 2, 4-triazole, a competitive inhibitor of catalase. The fat body is the only tissue which consistantly reacts positively for urate oxidase. The reaction product is sharply localized in granules of about the same size and distribution as the microbodies. The reaction is inhibited by 2, 6, 8-trichloropurine, a competitive inhibitor of urate oxidase.


1999 ◽  
Vol 97 (11) ◽  
pp. 1173-1184 ◽  
Author(s):  
R. Berardi, M. Fehervari, C. Zannoni

1978 ◽  
Vol 3 ◽  
pp. 163-175 ◽  
Author(s):  
F. Rustichelli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document