Geodetic Point Positioning with GPS (Global Positioning System) Carrier Beat Phase Data from the CASA UNO Experiment

1989 ◽  
Author(s):  
Stephen Malys ◽  
Peter A. Jensen
2020 ◽  
Vol 14 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Y. Facio ◽  
M. Berber

AbstractPost Processed Static (PPS) and Precise Point Positioning (PPP) techniques are not new; however, they have been refined over the decades. As such, today these techniques are offered online via GPS (Global Positioning System) data processing services. In this study, one Post Processed Static (OPUS) and one Precise Point Positioning (CSRS-PPP) technique is used to process 24 h GPS data for a CORS (Continuously Operating Reference Stations) station (P565) duration of year 2016. By analyzing the results sent by these two online services, subsidence is determined for the location of CORS station, P565, as 3–4 cm for the entire year of 2016. In addition, precision of these two techniques is determined as ∼2 cm. Accuracy of PPS and PPP results is 0.46 cm and 1.21 cm, respectively. Additionally, these two techniques are compared and variations between them is determined as 2.5 cm.


2021 ◽  
pp. 1-16
Author(s):  
Oladipo Emmanuel Abe ◽  
Babatunde Adeyemi ◽  
Olugbenga Ogunmodimu ◽  
Israel Emmanuel ◽  
E.J. Oluwadare ◽  
...  

Author(s):  
K. N. Tahar ◽  
S. S. Kamarudin

The establishment of ground control points is a critical issue in mapping field, especially for large scale mapping. The fast and rapid technique for ground control point’s establishment is very important for small budget projects. UAV onboard GPS has the ability to determine the point positioning. The objective of this research is to assess the accuracy of unmanned aerial vehicle onboard global positioning system in positioning determination. Therefore, this research used UAV onboard GPS as an alternative to determine the point positioning at the selected area. UAV is one of the powerful tools for data acquisition and it is used in many applications all over the world. This research concentrates on the error contributed from the UAV onboard GPS during observation. There are several points that have been used to study the pattern of positioning error. All errors were analyzed in world geodetic system 84- coordinate system, which is the basic coordinate system used by the global positioning system. Based on this research, the result of UAV onboard GPS positioning could be used in ground control point establishment with the specific error. In conclusion, accurate GCP establishment could be achieved using UAV onboard GPS by applying a specific correction based on this research.


2012 ◽  
Vol 29 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Byung-Kyu Choi ◽  
Kyoung-Min Roh ◽  
Sung-Ki Cho ◽  
Jong-Uk Park ◽  
Pil-Ho Park ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3220
Author(s):  
Honglei Qin ◽  
Peng Liu ◽  
Li Cong ◽  
Xia Xue

Although precise point positioning (PPP) is a well-established and promising technique with the use of precise satellite orbit and clock products, it costs a long convergence time to reach a centimeter-level positioning accuracy. The PPP with ambiguity resolution (PPP-AR) technique can improve convergence performance by resolving ambiguities after separating the fractional cycle bias (FCB). Now the FCB estimation is mainly realized by the regional or global operating reference station network. However, it does not work well in the areas where network resources are scarce. The contribution of this paper is to realize an ambiguity residual constraint-based PPP with partial ambiguity resolution (PPP-PARC) under no real-time network corrections to speed up the convergence, especially when the performance of the float solution is poor. More specifically, the update strategy of FCB estimation in a stand-alone receiver is proposed to realize the PPP-PAR. Thereafter, the solving process of FCB in a stand-alone receiver is summarized. Meanwhile, the influencing factors of the ambiguity success rate in the PPP-PAR without network corrections are analyzed. Meanwhile, the ambiguity residual constraint is added to adapt the particularity of the partial ambiguity-fixing without network corrections. Moreover, the positioning experiments with raw observation data at the Global Positioning System (GPS) globally distributed reference stations are conducted to determine the ambiguity residual threshold for post-processing and real-time scenarios. Finally, the positioning performance was verified by 22 GPS reference stations. The results show that convergence time is reduced by 15.8% and 26.4% in post-processing and real-time scenarios, respectively, when the float solution is unstable, compared with PPP using a float solution. However, if the float solution is stable, the PPP-PARC method has performance similar to the float solution. The method shows the significance of the PPP-PARC for future PPP applications in areas where network resource is deficient.


Author(s):  
K. N. Tahar ◽  
S. S. Kamarudin

The establishment of ground control points is a critical issue in mapping field, especially for large scale mapping. The fast and rapid technique for ground control point’s establishment is very important for small budget projects. UAV onboard GPS has the ability to determine the point positioning. The objective of this research is to assess the accuracy of unmanned aerial vehicle onboard global positioning system in positioning determination. Therefore, this research used UAV onboard GPS as an alternative to determine the point positioning at the selected area. UAV is one of the powerful tools for data acquisition and it is used in many applications all over the world. This research concentrates on the error contributed from the UAV onboard GPS during observation. There are several points that have been used to study the pattern of positioning error. All errors were analyzed in world geodetic system 84- coordinate system, which is the basic coordinate system used by the global positioning system. Based on this research, the result of UAV onboard GPS positioning could be used in ground control point establishment with the specific error. In conclusion, accurate GCP establishment could be achieved using UAV onboard GPS by applying a specific correction based on this research.


Sign in / Sign up

Export Citation Format

Share Document